An effective cell-penetrating peptide-based loading method to extracellular vesicles and enhancement in cellular delivery of drugs.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Jin Zhang, Ning Su, Wei Liu, Mengran Li, Haoyang Zheng, Bing Li, Xue Jin, Mingxia Gao, Xiangmin Zhang
{"title":"An effective cell-penetrating peptide-based loading method to extracellular vesicles and enhancement in cellular delivery of drugs.","authors":"Jin Zhang, Ning Su, Wei Liu, Mengran Li, Haoyang Zheng, Bing Li, Xue Jin, Mingxia Gao, Xiangmin Zhang","doi":"10.1007/s00216-025-05742-1","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have been demonstrated to own the advantages in evading phagocytosis, crossing biological barriers, and possessing excellent biocompatibility and intrinsic stability. Based on these characteristics, EVs have been used as effective therapeutic carriers for drug delivery, but the low drug loading capacity greatly limits further applications. Herein, we developed a drug loading method based on cell-penetrating peptide (CPP) to enhance the encapsulation of therapeutic reagents in EVs, and EVs-based drug delivery system achieved higher killing efficacy to tumor cells. Urinary EVs and chemotherapy reagent doxorubicin (DOX) were used as model. It is easy to conjugate CPP with DOX (CPP-DOX) through the linker N-succinimidyl 3-maleimidopropionate (SMP). CPP-DOX was incubated with EVs under a mild condition, promoting the encapsulation of DOX into EV cavities. CPP-DOX-EVs showed strong anticancer ability since EVs delivery facilitated the uptake by cancer cells. EVs loading of CPP-DOX exhibited higher drug loading efficiency at 37.18%, presenting about 2.5 times increase in efficiency over EVs loading of DOX through passive incubation. Easy operation and controllable condition further reinforce the advantages compared with other loading methods. CPP-based drug loading method provides an effective strategy for EVs-based drug delivery system.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05742-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) have been demonstrated to own the advantages in evading phagocytosis, crossing biological barriers, and possessing excellent biocompatibility and intrinsic stability. Based on these characteristics, EVs have been used as effective therapeutic carriers for drug delivery, but the low drug loading capacity greatly limits further applications. Herein, we developed a drug loading method based on cell-penetrating peptide (CPP) to enhance the encapsulation of therapeutic reagents in EVs, and EVs-based drug delivery system achieved higher killing efficacy to tumor cells. Urinary EVs and chemotherapy reagent doxorubicin (DOX) were used as model. It is easy to conjugate CPP with DOX (CPP-DOX) through the linker N-succinimidyl 3-maleimidopropionate (SMP). CPP-DOX was incubated with EVs under a mild condition, promoting the encapsulation of DOX into EV cavities. CPP-DOX-EVs showed strong anticancer ability since EVs delivery facilitated the uptake by cancer cells. EVs loading of CPP-DOX exhibited higher drug loading efficiency at 37.18%, presenting about 2.5 times increase in efficiency over EVs loading of DOX through passive incubation. Easy operation and controllable condition further reinforce the advantages compared with other loading methods. CPP-based drug loading method provides an effective strategy for EVs-based drug delivery system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信