{"title":"Ultrasonic-assisted extraction of luteolin from peanut shells using ionic liquid and its molecular mechanism.","authors":"Liwei Niu, Siwen Zhang, Xiaoyu Si, Yuhan Fang, Shuang Wang, Lulu Li, Zunlai Sheng","doi":"10.1016/j.ultsonch.2025.107228","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the potential of ionic liquids (ILs) as sustainable solvents in ultrasonic-assisted extraction (UAE) to efficiently recover luteolin from peanut shells. Among the range of ILs tested, 1-butyl-3-methylimidazolium tetrafluoroborate stood out as the most effective solvent, achieving the highest extraction yield. Single-factor experiments were conducted to analyze the effects of ultrasonic power, extraction time, extraction temperature, IL concentration, and solid-to-liquid ratio on extraction efficiency. Further optimization of the extraction conditions was performed using response surface methodology and neural network analysis, resulting in a significantly enhanced luteolin yield of 3.71 ± 0.06 mg/g. Interaction energy analyses were conducted to elucidate the interactions between ILs and luteolin, confirming the experimental findings and highlighting the strongest interaction energy between 1-butyl-3-methylimidazolium tetrafluoroborate and luteolin. A kinetic model for luteolin extraction was developed, demonstrating that the extraction process follows a second-order rate model, where the extraction rate is directly proportional to the square of the concentration difference between luteolin and the solvent. The outcomes of this research present an efficient protocol for luteolin extraction and provide novel insights into the application of UAE in extracting natural products.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"113 ","pages":"107228"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2025.107228","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the potential of ionic liquids (ILs) as sustainable solvents in ultrasonic-assisted extraction (UAE) to efficiently recover luteolin from peanut shells. Among the range of ILs tested, 1-butyl-3-methylimidazolium tetrafluoroborate stood out as the most effective solvent, achieving the highest extraction yield. Single-factor experiments were conducted to analyze the effects of ultrasonic power, extraction time, extraction temperature, IL concentration, and solid-to-liquid ratio on extraction efficiency. Further optimization of the extraction conditions was performed using response surface methodology and neural network analysis, resulting in a significantly enhanced luteolin yield of 3.71 ± 0.06 mg/g. Interaction energy analyses were conducted to elucidate the interactions between ILs and luteolin, confirming the experimental findings and highlighting the strongest interaction energy between 1-butyl-3-methylimidazolium tetrafluoroborate and luteolin. A kinetic model for luteolin extraction was developed, demonstrating that the extraction process follows a second-order rate model, where the extraction rate is directly proportional to the square of the concentration difference between luteolin and the solvent. The outcomes of this research present an efficient protocol for luteolin extraction and provide novel insights into the application of UAE in extracting natural products.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.