Core-shell structured BN/SiO2 nanofiber membrane featuring with dual-effect thermal management and flame retardancy for extreme space thermal protection

IF 21.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Duo Pan , Ziyuan Han , Junting Lei , Yutao Niu , Hu Liu , Sunmi Shin , Chuntai Liu , Zhanhu Guo
{"title":"Core-shell structured BN/SiO2 nanofiber membrane featuring with dual-effect thermal management and flame retardancy for extreme space thermal protection","authors":"Duo Pan ,&nbsp;Ziyuan Han ,&nbsp;Junting Lei ,&nbsp;Yutao Niu ,&nbsp;Hu Liu ,&nbsp;Sunmi Shin ,&nbsp;Chuntai Liu ,&nbsp;Zhanhu Guo","doi":"10.1016/j.scib.2025.01.005","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid progress of aerospace frontier engineering, the extreme space thermal environment has brought severe challenges to astronauts’ space suits, putting forward higher requirements for thermal protection materials. On this basis, a unique core-shell structured hexagonal boron nitride (h-BN)/silicon dioxide (SiO<sub>2</sub>) nanofiber membrane (HS) was prepared using the coaxial electrospinning method, of which both the thermal insulation SiO<sub>2</sub> nanofiber cortex and the passive radiation cooling (PRC) h-BN nanofiber core make it a promising dual-effect thermal management material. Especially, when the amount of h-BN is 0.9 g, the resultant HS (HS<sub>0.9</sub>) exhibits astonishing low thermal conductivity of 0.026 W m<sup>−1</sup> K<sup>−1</sup> and high reflectivity and emissivity of exceeding 90% over an extremely wide range. The expected dual-effect thermal management performance enables the HS to have an ideal cooling effect under both high sunlight intensity and strong light radiation. In addition, HS also shows excellent flame retardant performance arising from the excellent high-temperature stability of h-BN and SiO<sub>2</sub>. What is more, the tensile strength of HS<sub>0.9</sub> was also significantly increased from 0.42 to 7.2 MPa by encapsulating polyimide through vacuum filtration. Therefore, the research results of this work provide innovative highlights for high-temperature protection in daily life and even extreme space environments.</div></div>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":"70 5","pages":"Pages 722-732"},"PeriodicalIF":21.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095927325000106","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid progress of aerospace frontier engineering, the extreme space thermal environment has brought severe challenges to astronauts’ space suits, putting forward higher requirements for thermal protection materials. On this basis, a unique core-shell structured hexagonal boron nitride (h-BN)/silicon dioxide (SiO2) nanofiber membrane (HS) was prepared using the coaxial electrospinning method, of which both the thermal insulation SiO2 nanofiber cortex and the passive radiation cooling (PRC) h-BN nanofiber core make it a promising dual-effect thermal management material. Especially, when the amount of h-BN is 0.9 g, the resultant HS (HS0.9) exhibits astonishing low thermal conductivity of 0.026 W m−1 K−1 and high reflectivity and emissivity of exceeding 90% over an extremely wide range. The expected dual-effect thermal management performance enables the HS to have an ideal cooling effect under both high sunlight intensity and strong light radiation. In addition, HS also shows excellent flame retardant performance arising from the excellent high-temperature stability of h-BN and SiO2. What is more, the tensile strength of HS0.9 was also significantly increased from 0.42 to 7.2 MPa by encapsulating polyimide through vacuum filtration. Therefore, the research results of this work provide innovative highlights for high-temperature protection in daily life and even extreme space environments.

Abstract Image

具有双效热管理和阻燃性能的核壳结构BN/SiO2纳米纤维膜,用于极端空间热防护。
随着航天前沿工程的飞速发展,极端的空间热环境给航天员宇航服带来了严峻的挑战,对热防护材料提出了更高的要求。在此基础上,采用同轴静电纺丝方法制备了独特的核-壳结构六方氮化硼(h-BN)/二氧化硅(SiO2)纳米纤维膜(HS),其中具有保温隔热的SiO2纳米纤维皮层和被动辐射冷却(PRC)的h-BN纳米纤维芯使其成为一种很有前途的双效应热管理材料。特别是当h-BN用量为0.9 g时,HS (HS0.9)表现出0.026 W m-1 K-1的低导热系数和在极宽范围内超过90%的高反射率和发射率。预期的双效热管理性能使HS在高阳光强度和强光辐射下都具有理想的冷却效果。此外,由于h-BN和SiO2具有优异的高温稳定性,HS也表现出优异的阻燃性能。真空过滤包封聚酰亚胺后,HS0.9的抗拉强度也由0.42 MPa显著提高到7.2 MPa。因此,本工作的研究成果为日常生活甚至极端空间环境中的高温防护提供了创新亮点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
文献相关原料
公司名称
产品信息
麦克林
tris (hydroxymethyl) aminomethane (Tris)
麦克林
dopamine hydrochloride
阿拉丁
N-N-dimethylacetamide (DMAc)
阿拉丁
4,4′-diaminodiphenyl ether (ODA)
阿拉丁
3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信