Surface coating nanoarchitectonics for optimizing cytocompatibility and antimicrobial activity: The impact of hyaluronic acid positioning as the outermost layer.
Guilherme L B Neto, Tiago R B Quinalia, Débora A de Almeida, Liszt Y C Madruga, Paulo R Souza, Ketul C Popat, Roberta M Sabino, Alessandro F Martins
{"title":"Surface coating nanoarchitectonics for optimizing cytocompatibility and antimicrobial activity: The impact of hyaluronic acid positioning as the outermost layer.","authors":"Guilherme L B Neto, Tiago R B Quinalia, Débora A de Almeida, Liszt Y C Madruga, Paulo R Souza, Ketul C Popat, Roberta M Sabino, Alessandro F Martins","doi":"10.1016/j.ijbiomac.2025.139908","DOIUrl":null,"url":null,"abstract":"<p><p>Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PS<sub>ox</sub>) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PS<sub>ox</sub>, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA)<sub>2.5</sub> PEM (2.5 bilayers, 5 layers) and 36° on HA-terminated (PDDA/HA)<sub>3</sub> PEM (3 bilayers, 6 layers). The HA-terminated (PDDA/HA)₃ PEM demonstrated antimicrobial activity. Compared to uncoated PS surfaces, this PEM reduced the surface coverage of viable P. aeruginosa cells from 36.5 % to 3.7 % and S. aureus cells from 13.3 % to 2.5 % on uncoated PS surfaces. The antimicrobial assay following the JIS Z 2801-2010 standard demonstrated that the PDDA-terminated (PDDA/HA)<sub>2.5</sub> PEM inhibited S. aureus growth by 48 %, compared to 32 % inhibition by the HA-terminated (PDDA/HA)<sub>3</sub> PEM relative to the uncoated and non-oxidized polystyrene (PS) surface (control). HA-terminated PEM demonstrated lesser antimicrobial activity than PDDA-terminated PEM. However, both PEMs were cytocompatible against erythrocytes and human adipose-derived stem cells (ADSCs), indicating their potential for biomedical applications, particularly prosthetic coatings.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"298 ","pages":"139908"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139908","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PSox) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PSox, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA)2.5 PEM (2.5 bilayers, 5 layers) and 36° on HA-terminated (PDDA/HA)3 PEM (3 bilayers, 6 layers). The HA-terminated (PDDA/HA)₃ PEM demonstrated antimicrobial activity. Compared to uncoated PS surfaces, this PEM reduced the surface coverage of viable P. aeruginosa cells from 36.5 % to 3.7 % and S. aureus cells from 13.3 % to 2.5 % on uncoated PS surfaces. The antimicrobial assay following the JIS Z 2801-2010 standard demonstrated that the PDDA-terminated (PDDA/HA)2.5 PEM inhibited S. aureus growth by 48 %, compared to 32 % inhibition by the HA-terminated (PDDA/HA)3 PEM relative to the uncoated and non-oxidized polystyrene (PS) surface (control). HA-terminated PEM demonstrated lesser antimicrobial activity than PDDA-terminated PEM. However, both PEMs were cytocompatible against erythrocytes and human adipose-derived stem cells (ADSCs), indicating their potential for biomedical applications, particularly prosthetic coatings.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.