{"title":"Fabrication and characterization of emulsion stabilized by tannic acid/soluble potato starch complexes.","authors":"Xianling Wei, Rui Lei, Ziqing Hu, Weidong Bai, Xiaofang Zeng, Xiaoyan Liu, Huan Xie, Jieyu Chen","doi":"10.1016/j.ijbiomac.2025.139904","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the influence of tannic acid (TA)/soluble potato starch (PS) mass ratio and PS concentration on TA/PS complexes and emulsions stabilized by TA/PS complexes were studied. The size, hydrophobicity and emulsifying properties of TA/PS complexes were all controlled by TA/PS mass ratio and PS concentration. In detail, the hydrophobicity of PS (θ<sub>ow</sub> = 48°) improved after complexing with TA to form TA/PS complexes (θ<sub>ow max</sub> = 64°). The emulsions size decreased and then increased with increasing TA/PS ratio. Additionally, the emulsifying properties of TA/PS complexes improved by increasing PS concentration. Analysis of the interfacial tension after adsorption equilibrium (0.25 mass ratio, TA/PS complexes (13.03 mN/m), TA (14.21 mN/m) and PS (20.25mN/m)), TA and PS had a synergistic effect of stabilizing the oil-water surface. Among them, TA mainly played a role in emulsifying property, and PS mainly played a role of stabilization. All emulsions exhibited obvious creaming. However, at high PS concentration or TA/PS ratio, the creaming was prevented by formed smaller emulsion size, interface complexes networks or high viscosity (Increased from 0.004 to 0.060 Pa.s). It showed that TA/PS complexes can act as emulsifiers to improve the physical and oxidative stability of emulsions, making them suitable for delivering oxidation-sensitive fat-soluble bioactive compounds.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139904"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139904","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the influence of tannic acid (TA)/soluble potato starch (PS) mass ratio and PS concentration on TA/PS complexes and emulsions stabilized by TA/PS complexes were studied. The size, hydrophobicity and emulsifying properties of TA/PS complexes were all controlled by TA/PS mass ratio and PS concentration. In detail, the hydrophobicity of PS (θow = 48°) improved after complexing with TA to form TA/PS complexes (θow max = 64°). The emulsions size decreased and then increased with increasing TA/PS ratio. Additionally, the emulsifying properties of TA/PS complexes improved by increasing PS concentration. Analysis of the interfacial tension after adsorption equilibrium (0.25 mass ratio, TA/PS complexes (13.03 mN/m), TA (14.21 mN/m) and PS (20.25mN/m)), TA and PS had a synergistic effect of stabilizing the oil-water surface. Among them, TA mainly played a role in emulsifying property, and PS mainly played a role of stabilization. All emulsions exhibited obvious creaming. However, at high PS concentration or TA/PS ratio, the creaming was prevented by formed smaller emulsion size, interface complexes networks or high viscosity (Increased from 0.004 to 0.060 Pa.s). It showed that TA/PS complexes can act as emulsifiers to improve the physical and oxidative stability of emulsions, making them suitable for delivering oxidation-sensitive fat-soluble bioactive compounds.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.