Exploring the binding mode of BBA protein anchored on defective graphene and evaluating the biocompatibility of two types of graphene with λ-repressor protein
Lu Han , Xiaoyun Zhang , Fei Wu , Tianhua Wang , Honglin Zhai
{"title":"Exploring the binding mode of BBA protein anchored on defective graphene and evaluating the biocompatibility of two types of graphene with λ-repressor protein","authors":"Lu Han , Xiaoyun Zhang , Fei Wu , Tianhua Wang , Honglin Zhai","doi":"10.1016/j.colsurfb.2025.114510","DOIUrl":null,"url":null,"abstract":"<div><div>Since defects in nanomaterials are inevitable during experimental manipulation, investigating the interactions between defective materials and active biological proteins is crucial for evaluating the biocompatibility and biosafety of nanomaterials. This study employs molecular dynamics simulation techniques to investigate the interaction mechanisms between two types of graphene (ideal graphene and defective graphene) and two model proteins (BBA protein and λ-repressor protein). The simulation results indicate that both types of graphene exhibit superior biocompatibility with the λ-repressor protein compared to the BBA protein. The difference in binding modes of the BBA protein with the two graphenes arises mainly from its initial orientation. Notably, the positively charged Arg residue forces the BBA protein to \"anchor\" to the surface of defective graphene, significantly restricting its lateral migration. The λ-repressor protein is \"anchored\" onto the surface of defective graphene through hydrogen bonding interactions involving its Ser residue. Such hydrogen bonding was never reported in similar systems. The distinctive binding modes of these two model proteins with defective graphene are beneficial for the future development of safer and more efficient nanomedicine technologies.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"249 ","pages":"Article 114510"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000177","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Since defects in nanomaterials are inevitable during experimental manipulation, investigating the interactions between defective materials and active biological proteins is crucial for evaluating the biocompatibility and biosafety of nanomaterials. This study employs molecular dynamics simulation techniques to investigate the interaction mechanisms between two types of graphene (ideal graphene and defective graphene) and two model proteins (BBA protein and λ-repressor protein). The simulation results indicate that both types of graphene exhibit superior biocompatibility with the λ-repressor protein compared to the BBA protein. The difference in binding modes of the BBA protein with the two graphenes arises mainly from its initial orientation. Notably, the positively charged Arg residue forces the BBA protein to "anchor" to the surface of defective graphene, significantly restricting its lateral migration. The λ-repressor protein is "anchored" onto the surface of defective graphene through hydrogen bonding interactions involving its Ser residue. Such hydrogen bonding was never reported in similar systems. The distinctive binding modes of these two model proteins with defective graphene are beneficial for the future development of safer and more efficient nanomedicine technologies.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.