Biophysiochemically favorable, antithrombotic and pro-endothelial coordination compound nanocoating of copper (II) with protocatechuic acid & nattokinase on flow-diverting stents
Zhaozhao Zhang , Fei Gao , Jinlong Mao , Jinjing Liu , Ziyi Zeng , Yukun Zhou , Wenjie Tao , Wenyuan Wang , Gen Lyu , Lei Xu , Guojiang Wan
{"title":"Biophysiochemically favorable, antithrombotic and pro-endothelial coordination compound nanocoating of copper (II) with protocatechuic acid & nattokinase on flow-diverting stents","authors":"Zhaozhao Zhang , Fei Gao , Jinlong Mao , Jinjing Liu , Ziyi Zeng , Yukun Zhou , Wenjie Tao , Wenyuan Wang , Gen Lyu , Lei Xu , Guojiang Wan","doi":"10.1016/j.colsurfb.2025.114509","DOIUrl":null,"url":null,"abstract":"<div><div>Neurovascular flow-diverting stents (FDSs) are revolutionizing the paradigm for treatment of intracranial aneurysms, but they still face great challenges like post- implantation acute thrombosis and delayed reendothelialization. Surface modification is of crucial relevance in addressing such key issues. In this study, we fabricated an ultrathin nanocoating out of copper (II) together with protocatechuic acid (PCA) and nattokinase (NK) bioactive molecules on NiTi FDSs via a coordination chemistry approach, with favorable biophysiochemical interactions, to fulfill this goal. This coating was identified as covalently-anchored and compactly covering the FDSs substrate, with unique nano-structured morphology as well as superhydrophilicity. The <em>in vitro</em> coagulation and whole blood assays demonstrated that the modified FDS's surfaces showed improved antithrombogenicity, with reduced platelet and fibrinogen adhesion, as well as their aggregation and activation, and consequently prolonged clotting time leading to decreased thrombosis occurrence. Human umbilical vein endothelial cell cultures confirmed the modified capability of FDSs to promote endothelial cell proliferation and migration. The <em>ex vivo</em> experiments verified that modified FDSs had clearly in-stent patency without thrombi formation, as compared to the bare FDSs bearing thromboembolic blockage. It was postulated that these enhanced biocompatibilities can be attributable to the copper-catalyzed nitric oxide (NO) released as a functional mediator, the nature of the PCA and NK molecules, as well as the synergic biophysiochemical surface/interface interactions. Our strategy may not only open a new avenue for surface-functionalizing neurovascular FDSs for medical purpose but also help better-understand interfacial phenomena on the advanced biomaterials.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"249 ","pages":"Article 114509"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000165","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Neurovascular flow-diverting stents (FDSs) are revolutionizing the paradigm for treatment of intracranial aneurysms, but they still face great challenges like post- implantation acute thrombosis and delayed reendothelialization. Surface modification is of crucial relevance in addressing such key issues. In this study, we fabricated an ultrathin nanocoating out of copper (II) together with protocatechuic acid (PCA) and nattokinase (NK) bioactive molecules on NiTi FDSs via a coordination chemistry approach, with favorable biophysiochemical interactions, to fulfill this goal. This coating was identified as covalently-anchored and compactly covering the FDSs substrate, with unique nano-structured morphology as well as superhydrophilicity. The in vitro coagulation and whole blood assays demonstrated that the modified FDS's surfaces showed improved antithrombogenicity, with reduced platelet and fibrinogen adhesion, as well as their aggregation and activation, and consequently prolonged clotting time leading to decreased thrombosis occurrence. Human umbilical vein endothelial cell cultures confirmed the modified capability of FDSs to promote endothelial cell proliferation and migration. The ex vivo experiments verified that modified FDSs had clearly in-stent patency without thrombi formation, as compared to the bare FDSs bearing thromboembolic blockage. It was postulated that these enhanced biocompatibilities can be attributable to the copper-catalyzed nitric oxide (NO) released as a functional mediator, the nature of the PCA and NK molecules, as well as the synergic biophysiochemical surface/interface interactions. Our strategy may not only open a new avenue for surface-functionalizing neurovascular FDSs for medical purpose but also help better-understand interfacial phenomena on the advanced biomaterials.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.