Enhancing emulsification properties of pea protein isolate: Impact of heat treatment and soy hull polysaccharides on conformational modification and stability
Xiuzhi Cao , Shengnan Wang , Yunfei Yu , Lu Han , He Liu
{"title":"Enhancing emulsification properties of pea protein isolate: Impact of heat treatment and soy hull polysaccharides on conformational modification and stability","authors":"Xiuzhi Cao , Shengnan Wang , Yunfei Yu , Lu Han , He Liu","doi":"10.1016/j.ijbiomac.2025.140106","DOIUrl":null,"url":null,"abstract":"<div><div>In order to investigate the effect of conformational change in pea protein isolate (PPI) on its emulsification properties, soy hull polysaccharides (SHP) were added to modify the conformation following heat treatment at 70–100 °C to improve emulsification. The results of UV and fluorescence spectroscopy indicated that the heat treatment exposed the amino acid residues to a more hydrophobic environment. The mean volume diameter (<em>d</em><sub>4,3</sub>) of PPI was reduced from 67.25 ± 3.31 to 45.50 ± 0.62 μm, and secondary structure of protein became more ordered. The addition of SHP enhanced the adsorption of protein at the oil-water interface and reduced the interfacial tension. Interestingly, SHP decreased the short-term (12<em>h</em>) thermal stability index (TSI) from 3.5 to 2.8 in PPI/SHP emulsion treated at 100 °C. These findings validated that heat treatment combined with SHP modification can improve the emulsification of PPI, which positively impacts the development of pea-based products for high temperatures applications.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"298 ","pages":"Article 140106"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025006555","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to investigate the effect of conformational change in pea protein isolate (PPI) on its emulsification properties, soy hull polysaccharides (SHP) were added to modify the conformation following heat treatment at 70–100 °C to improve emulsification. The results of UV and fluorescence spectroscopy indicated that the heat treatment exposed the amino acid residues to a more hydrophobic environment. The mean volume diameter (d4,3) of PPI was reduced from 67.25 ± 3.31 to 45.50 ± 0.62 μm, and secondary structure of protein became more ordered. The addition of SHP enhanced the adsorption of protein at the oil-water interface and reduced the interfacial tension. Interestingly, SHP decreased the short-term (12h) thermal stability index (TSI) from 3.5 to 2.8 in PPI/SHP emulsion treated at 100 °C. These findings validated that heat treatment combined with SHP modification can improve the emulsification of PPI, which positively impacts the development of pea-based products for high temperatures applications.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.