Bacteria Flagella-Mimicking Polymer Multilayer Magnetic Microrobots.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Liang Lu, Shuang Bai, Jiaqi Shi, Hutao Zhang, Gang Hou, Wei Wang, Shoubin Sun, Tianyun Huang, Yuxin Jia, Alexander Granovsky, Perov Nikolai, Zhiguang Wu, Hui Xie, He Wu
{"title":"Bacteria Flagella-Mimicking Polymer Multilayer Magnetic Microrobots.","authors":"Liang Lu, Shuang Bai, Jiaqi Shi, Hutao Zhang, Gang Hou, Wei Wang, Shoubin Sun, Tianyun Huang, Yuxin Jia, Alexander Granovsky, Perov Nikolai, Zhiguang Wu, Hui Xie, He Wu","doi":"10.1002/smtd.202401558","DOIUrl":null,"url":null,"abstract":"<p><p>Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template-assisted layer-by-layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots. Geometric variables of the polymer microrobots, such as the diameter and wall thickness, can be controlled by selection of porous template and layers of assembly. The microrobots perform controllable propulsion through the manipulation of magnetic field. The comparative analysis of the movement behavior reveals that the deformation of microrobots may be attributed to the propulsion upon rotating magnetic field, which is similar to that of natural bacteria. The influence of actuation and frequency on the velocity of the microrobots is studied. Such polymer multilayer magnetic microrobots may provide a novel concept to develop rapidly delivering drug therapeutic agents for diverse practical biomedical uses.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401558"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401558","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template-assisted layer-by-layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots. Geometric variables of the polymer microrobots, such as the diameter and wall thickness, can be controlled by selection of porous template and layers of assembly. The microrobots perform controllable propulsion through the manipulation of magnetic field. The comparative analysis of the movement behavior reveals that the deformation of microrobots may be attributed to the propulsion upon rotating magnetic field, which is similar to that of natural bacteria. The influence of actuation and frequency on the velocity of the microrobots is studied. Such polymer multilayer magnetic microrobots may provide a novel concept to develop rapidly delivering drug therapeutic agents for diverse practical biomedical uses.

细菌鞭毛模拟聚合物多层磁性微型机器人。
大规模生产生物医学微型机器人需要昂贵而复杂的制备技术和多用途的生物相容性材料。从天然细菌鞭毛中学习,该研究展示了一种磁性聚合物多层圆柱形微型机器人,该机器人在均匀强度的外部旋转磁场上赋予可控推进力。磁性微机器人是通过模板辅助的逐层技术和随后的磁性粒子功能化在微机器人的大开口上构建的。聚合物微机器人的几何变量,如直径和壁厚,可以通过选择多孔模板和组装层来控制。微型机器人通过对磁场的操纵来实现可控推进。对其运动行为的对比分析表明,微机器人的变形可能是由于旋转磁场的推进作用,这与天然细菌相似。研究了驱动和频率对微机器人速度的影响。这种聚合物多层磁性微机器人可能为开发用于多种实际生物医学用途的快速递送药物治疗剂提供一个新的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信