Ruonan Zhang, Xuewei Sun, Han Lu, Xinrui Zhang, Mingyan Zhang, Xuewen Ji, Xinyi Yu, Chengliang Tang, Zihan Wu, Yinghua Mao, Jin Zhu, Minjun Ji, Zhan Yang
{"title":"Akkermansia muciniphila Mediated the Preventive Effect of Disulfiram on Acute Liver Injury via PI3K/Akt Pathway.","authors":"Ruonan Zhang, Xuewei Sun, Han Lu, Xinrui Zhang, Mingyan Zhang, Xuewen Ji, Xinyi Yu, Chengliang Tang, Zihan Wu, Yinghua Mao, Jin Zhu, Minjun Ji, Zhan Yang","doi":"10.1111/1751-7915.70083","DOIUrl":null,"url":null,"abstract":"<p><p>Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear. We utilised bacterial 16S rRNA gene profiling, antimicrobial treatments, and faecal microbiota transplantation tests to explore whether DSF therapy for ALI is dependent on gut microbiota. Our findings indicate that DSF primarily restores intestinal microbiome balance by modulating the abundance of Akkermansia muciniphila (A. muciniphila), leading to significant alleviation of ALI symptoms in a gut microbiota dependent manner. We also found that A. muciniphila can promote the activation of PI3K/Akt pathway, correct the Bcl-2/Bax ratio, and further inhibit hepatocyte apoptosis. In conclusion, DSF ameliorates ALI by modulating the intestinal microbiome and activating the PI3K/AKT pathway through A. muciniphila.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 1","pages":"e70083"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/1751-7915.70083","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear. We utilised bacterial 16S rRNA gene profiling, antimicrobial treatments, and faecal microbiota transplantation tests to explore whether DSF therapy for ALI is dependent on gut microbiota. Our findings indicate that DSF primarily restores intestinal microbiome balance by modulating the abundance of Akkermansia muciniphila (A. muciniphila), leading to significant alleviation of ALI symptoms in a gut microbiota dependent manner. We also found that A. muciniphila can promote the activation of PI3K/Akt pathway, correct the Bcl-2/Bax ratio, and further inhibit hepatocyte apoptosis. In conclusion, DSF ameliorates ALI by modulating the intestinal microbiome and activating the PI3K/AKT pathway through A. muciniphila.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes