Sibel Kalyoncu, Dogu Sayili, Ayca Zeybek Kuyucu, Hakan Soyturk, Seyda Gullu, Busra Ersayan, Ibrahim Oguzhan Tarman, Mehmet Ender Avci, Olcay Mert, Umut Haskok, Ege Tekin, Huseyin Akinturk, Ridvan Orkut, Aysegul Demirtas, Idil Tilmensagir, Ceren Ulker, Bilgi Gungor, Mehmet Inan
{"title":"Development of a Recombinant Omicron BA.1 Subunit Vaccine Candidate in Pichia pastoris.","authors":"Sibel Kalyoncu, Dogu Sayili, Ayca Zeybek Kuyucu, Hakan Soyturk, Seyda Gullu, Busra Ersayan, Ibrahim Oguzhan Tarman, Mehmet Ender Avci, Olcay Mert, Umut Haskok, Ege Tekin, Huseyin Akinturk, Ridvan Orkut, Aysegul Demirtas, Idil Tilmensagir, Ceren Ulker, Bilgi Gungor, Mehmet Inan","doi":"10.1111/1751-7915.70077","DOIUrl":null,"url":null,"abstract":"<p><p>Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.1-based recombinant vaccine candidate expressed in P. pastoris. The receptor binding domain of Omicron BA.1 spike protein (RBD-Omicron) was produced at 0.35 g/L in supernatant. With a 60% recovery after two-step purification, RBD-Omicron showed 99% purity. After in vitro characterisation of purified RBD-Omicron via chromatography, mass spectrometry, calorimetry and surface plasmon resonance-based methods, it was injected into mice for immunization studies. Three different doses of Alum and CpG adjuvanted RBD-Omicron were investigated and 10 μg RBD-Omicron gave the highest antigenicity. After two doses of vaccination, IgG titers in mice serum reached to more than 10<sup>6</sup>. These serum antibodies also recognized earlier (Delta Plus: B.1.617.2) and later (Eris: EG.5, Pirola: BA.2.86) SARS-CoV2 variants. The long-term immunological response in mice was measured by analyzing serum antibody titers and T-cell response of splenocytes after 60 weeks. Interestingly, IgG titers and Th1 response were significantly high even after a year. Omicron subvariants are dominantly circulating in the world, so Omicron sub-lineage-based vaccines can be used for future pandemics. The RBD-Omicron-based vaccine candidate developed in this study is suitable for technology transfer and transition into the clinic.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 1","pages":"e70077"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/1751-7915.70077","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.1-based recombinant vaccine candidate expressed in P. pastoris. The receptor binding domain of Omicron BA.1 spike protein (RBD-Omicron) was produced at 0.35 g/L in supernatant. With a 60% recovery after two-step purification, RBD-Omicron showed 99% purity. After in vitro characterisation of purified RBD-Omicron via chromatography, mass spectrometry, calorimetry and surface plasmon resonance-based methods, it was injected into mice for immunization studies. Three different doses of Alum and CpG adjuvanted RBD-Omicron were investigated and 10 μg RBD-Omicron gave the highest antigenicity. After two doses of vaccination, IgG titers in mice serum reached to more than 106. These serum antibodies also recognized earlier (Delta Plus: B.1.617.2) and later (Eris: EG.5, Pirola: BA.2.86) SARS-CoV2 variants. The long-term immunological response in mice was measured by analyzing serum antibody titers and T-cell response of splenocytes after 60 weeks. Interestingly, IgG titers and Th1 response were significantly high even after a year. Omicron subvariants are dominantly circulating in the world, so Omicron sub-lineage-based vaccines can be used for future pandemics. The RBD-Omicron-based vaccine candidate developed in this study is suitable for technology transfer and transition into the clinic.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes