Andrea Citarella, Alessandro Fiori, Alessandra Silvani, Daniele Passarella, Valerio Fasano
{"title":"Sustainable Synthesis of 1,2,3-Triazoles using Cyrene as a Biodegradable Solvent in Click Chemistry.","authors":"Andrea Citarella, Alessandro Fiori, Alessandra Silvani, Daniele Passarella, Valerio Fasano","doi":"10.1002/cssc.202402538","DOIUrl":null,"url":null,"abstract":"<p><p>The first successful synthesis of 1,2,3-triazoles using Cyrene<sup>TM</sup> as a biodegradable and non-toxic solvent in click chemistry has been developed. In contrast to previous methods, this sustainable approach allows product isolation by simple precipitation in water, eliminating the need for organic solvent extractions and column chromatography purifications, thus minimizing waste consumption while reducing operational costs. The protocol, performed also at gram scale, has broad applicability and versatility, as shown with complex substrates like biologically active coumarins or triazole-linked bifunctional molecules. Finally, this protocol is also amenable to a three-component reaction involving organic halides, terminal acetylenes and sodium azide, thus avoiding the isolation of organic azides, difficult-to-handle species known for their environmental sensitivity.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402538"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402538","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The first successful synthesis of 1,2,3-triazoles using CyreneTM as a biodegradable and non-toxic solvent in click chemistry has been developed. In contrast to previous methods, this sustainable approach allows product isolation by simple precipitation in water, eliminating the need for organic solvent extractions and column chromatography purifications, thus minimizing waste consumption while reducing operational costs. The protocol, performed also at gram scale, has broad applicability and versatility, as shown with complex substrates like biologically active coumarins or triazole-linked bifunctional molecules. Finally, this protocol is also amenable to a three-component reaction involving organic halides, terminal acetylenes and sodium azide, thus avoiding the isolation of organic azides, difficult-to-handle species known for their environmental sensitivity.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology