"Cofactors" for Natural Products.

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL
ChemMedChem Pub Date : 2025-01-16 DOI:10.1002/cmdc.202400498
Shao-Lun Chiou, Chin-Yuan Chang, John Chu
{"title":"\"Cofactors\" for Natural Products.","authors":"Shao-Lun Chiou, Chin-Yuan Chang, John Chu","doi":"10.1002/cmdc.202400498","DOIUrl":null,"url":null,"abstract":"<p><p>Cofactors are non-protein entities necessary for proteins to operate. They provide \"functional groups\" beyond those of the 20 canonical amino acids and enable proteins to carry out more diverse functions. Such a viewpoint is rarely mentioned, if at all, when it comes to natural products and is the theme of this Concept. Even though the mechanisms of action (MOA) of only a few natural products are known to require cofactors, we believe that cofactor mediated MOA in natural products are far more prevalent than what we currently know. Bleomycin is a case in point. It binds iron cation to form a pseudoenzyme that generates reactive oxygen species. As another example, calcium cations induce laspartomycin to \"fold\" into the active conformation. Iron and calcium are bona fide cofactors for bleomycin and laspartomycin, respectively, as these natural products do not display their characteristic anticancer and antibacterial activities without Fe(II) and Ca(II). These types of cofactor mediated MOA in natural products were discovered mostly serendipitously, and being conscious of such a possibility is the first step toward identifying more novel chemistry that nature performs.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400498"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400498","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cofactors are non-protein entities necessary for proteins to operate. They provide "functional groups" beyond those of the 20 canonical amino acids and enable proteins to carry out more diverse functions. Such a viewpoint is rarely mentioned, if at all, when it comes to natural products and is the theme of this Concept. Even though the mechanisms of action (MOA) of only a few natural products are known to require cofactors, we believe that cofactor mediated MOA in natural products are far more prevalent than what we currently know. Bleomycin is a case in point. It binds iron cation to form a pseudoenzyme that generates reactive oxygen species. As another example, calcium cations induce laspartomycin to "fold" into the active conformation. Iron and calcium are bona fide cofactors for bleomycin and laspartomycin, respectively, as these natural products do not display their characteristic anticancer and antibacterial activities without Fe(II) and Ca(II). These types of cofactor mediated MOA in natural products were discovered mostly serendipitously, and being conscious of such a possibility is the first step toward identifying more novel chemistry that nature performs.

天然产品的“辅助因子”。
辅助因子是蛋白质运作所必需的非蛋白质实体。它们提供了20种典型氨基酸之外的“官能团”,使蛋白质能够执行更多样化的功能。当涉及到天然产品时,这种观点很少被提及,如果有的话,这是这个概念的主题。尽管已知只有少数天然产物的作用机制(MOA)需要辅因子,但我们认为,辅因子介导的MOA在天然产物中的作用机制远比我们目前所知的更为普遍。博莱霉素就是一个很好的例子。它结合铁阳离子形成一种产生活性氧的假酶。又如,钙离子诱导喇斯帕霉素“折叠”成活性构象。铁和钙分别是博来霉素和拉斯帕霉素的真正的辅助因子,因为这些天然产物没有铁(II)和钙(II)就不能表现出它们特有的抗癌和抗菌活性。在天然产物中,这些类型的辅因子介导的MOA大多是偶然发现的,意识到这种可能性是识别自然界中更多新化学的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信