Large-scale and long-term wildlife research and monitoring using camera traps: a continental synthesis

IF 11 1区 生物学 Q1 BIOLOGY
Tom Bruce, Zachary Amir, Benjamin L. Allen, Brendan F. Alting, Matt Amos, John Augusteyn, Guy-Anthony Ballard, Linda M. Behrendorff, Kristian Bell, Andrew J. Bengsen, Ami Bennett, Joe S. Benshemesh, Joss Bentley, Caroline J. Blackmore, Remo Boscarino-Gaetano, Lachlan A. Bourke, Rob Brewster, Barry W. Brook, Colin Broughton, Jessie C. Buettel, Andrew Carter, Antje Chiu-Werner, Andrew W. Claridge, Sarah Comer, Sebastien Comte, Rod M. Connolly, Mitchell A. Cowan, Sophie L. Cross, Calum X. Cunningham, Anastasia H. Dalziell, Hugh F. Davies, Jenny Davis, Stuart J. Dawson, Julian Di Stefano, Christopher R. Dickman, Martin L. Dillon, Tim S. Doherty, Michael M. Driessen, Don A. Driscoll, Shannon J. Dundas, Anne C. Eichholtzer, Todd F. Elliott, Peter Elsworth, Bronwyn A. Fancourt, Loren L. Fardell, James Faris, Adam Fawcett, Diana O. Fisher, Peter J. S. Fleming, David M. Forsyth, Alejandro D. Garza-Garcia, William L. Geary, Graeme Gillespie, Patrick J. Giumelli, Ana Gracanin, Hedley S. Grantham, Aaron C. Greenville, Stephen R. Griffiths, Heidi Groffen, David G. Hamilton, Lana Harriott, Matthew W. Hayward, Geoffrey Heard, Jaime Heiniger, Kristofer M. Helgen, Tim J. Henderson, Lorna Hernandez-Santin, Cesar Herrera, Ben T. Hirsch, Rosemary Hohnen, Tracey A. Hollings, Conrad J. Hoskin, Bronwyn A. Hradsky, Jacinta E. Humphrey, Paul R. Jennings, Menna E. Jones, Neil R. Jordan, Catherine L. Kelly, Malcolm S. Kennedy, Monica L. Knipler, Tracey L. Kreplins, Kiara L. L'Herpiniere, William F. Laurance, Tyrone H. Lavery, Mark Le Pla, Lily Leahy, Ashley Leedman, Sarah Legge, Ana V. Leitão, Mike Letnic, Michael J. Liddell, Zoë E. Lieb, Grant D. Linley, Allan T. Lisle, Cheryl A. Lohr, Natalya Maitz, Kieran D. Marshall, Rachel T. Mason, Daniela F. Matheus-Holland, Leo B. McComb, Peter J. McDonald, Hugh McGregor, Donald T. McKnight, Paul D. Meek, Vishnu Menon, Damian R. Michael, Charlotte H. Mills, Vivianna Miritis, Harry A. Moore, Helen R. Morgan, Brett P. Murphy, Andrew J. Murray, Daniel J. D. Natusch, Heather Neilly, Paul Nevill, Peggy Newman, Thomas M. Newsome, Dale G. Nimmo, Eric J. Nordberg, Terence W. O'Dwyer, Sally O'Neill, Julie M. Old, Katherine Oxenham, Matthew D. Pauza, Ange J. L. Pestell, Benjamin J. Pitcher, Christopher A. Pocknee, Hugh P. Possingham, Keren G. Raiter, Jacquie S. Rand, Matthew W. Rees, Anthony R. Rendall, Juanita Renwick, April Reside, Miranda Rew-Duffy, Euan G. Ritchie, Chris P. Roach, Alan Robley, Stefanie M. Rog, Tracy M. Rout, Thomas A. Schlacher, Cyril R. Scomparin, Holly Sitters, Deane A. Smith, Ruchira Somaweera, Emma E. Spencer, Rebecca E. Spindler, Alyson M. Stobo-Wilson, Danielle Stokeld, Louise M. Streeting, Duncan R. Sutherland, Patrick L. Taggart, Daniella Teixeira, Graham G. Thompson, Scott A. Thompson, Mary O. Thorpe, Stephanie J. Todd, Alison L. Towerton, Karl Vernes, Grace Waller, Glenda M. Wardle, Darcy J. Watchorn, Alexander W. T. Watson, Justin A. Welbergen, Michael A. Weston, Baptiste J. Wijas, Stephen E. Williams, Luke P. Woodford, Eamonn I. F. Wooster, Elizabeth Znidersic, Matthew S. Luskin
{"title":"Large-scale and long-term wildlife research and monitoring using camera traps: a continental synthesis","authors":"Tom Bruce,&nbsp;Zachary Amir,&nbsp;Benjamin L. Allen,&nbsp;Brendan F. Alting,&nbsp;Matt Amos,&nbsp;John Augusteyn,&nbsp;Guy-Anthony Ballard,&nbsp;Linda M. Behrendorff,&nbsp;Kristian Bell,&nbsp;Andrew J. Bengsen,&nbsp;Ami Bennett,&nbsp;Joe S. Benshemesh,&nbsp;Joss Bentley,&nbsp;Caroline J. Blackmore,&nbsp;Remo Boscarino-Gaetano,&nbsp;Lachlan A. Bourke,&nbsp;Rob Brewster,&nbsp;Barry W. Brook,&nbsp;Colin Broughton,&nbsp;Jessie C. Buettel,&nbsp;Andrew Carter,&nbsp;Antje Chiu-Werner,&nbsp;Andrew W. Claridge,&nbsp;Sarah Comer,&nbsp;Sebastien Comte,&nbsp;Rod M. Connolly,&nbsp;Mitchell A. Cowan,&nbsp;Sophie L. Cross,&nbsp;Calum X. Cunningham,&nbsp;Anastasia H. Dalziell,&nbsp;Hugh F. Davies,&nbsp;Jenny Davis,&nbsp;Stuart J. Dawson,&nbsp;Julian Di Stefano,&nbsp;Christopher R. Dickman,&nbsp;Martin L. Dillon,&nbsp;Tim S. Doherty,&nbsp;Michael M. Driessen,&nbsp;Don A. Driscoll,&nbsp;Shannon J. Dundas,&nbsp;Anne C. Eichholtzer,&nbsp;Todd F. Elliott,&nbsp;Peter Elsworth,&nbsp;Bronwyn A. Fancourt,&nbsp;Loren L. Fardell,&nbsp;James Faris,&nbsp;Adam Fawcett,&nbsp;Diana O. Fisher,&nbsp;Peter J. S. Fleming,&nbsp;David M. Forsyth,&nbsp;Alejandro D. Garza-Garcia,&nbsp;William L. Geary,&nbsp;Graeme Gillespie,&nbsp;Patrick J. Giumelli,&nbsp;Ana Gracanin,&nbsp;Hedley S. Grantham,&nbsp;Aaron C. Greenville,&nbsp;Stephen R. Griffiths,&nbsp;Heidi Groffen,&nbsp;David G. Hamilton,&nbsp;Lana Harriott,&nbsp;Matthew W. Hayward,&nbsp;Geoffrey Heard,&nbsp;Jaime Heiniger,&nbsp;Kristofer M. Helgen,&nbsp;Tim J. Henderson,&nbsp;Lorna Hernandez-Santin,&nbsp;Cesar Herrera,&nbsp;Ben T. Hirsch,&nbsp;Rosemary Hohnen,&nbsp;Tracey A. Hollings,&nbsp;Conrad J. Hoskin,&nbsp;Bronwyn A. Hradsky,&nbsp;Jacinta E. Humphrey,&nbsp;Paul R. Jennings,&nbsp;Menna E. Jones,&nbsp;Neil R. Jordan,&nbsp;Catherine L. Kelly,&nbsp;Malcolm S. Kennedy,&nbsp;Monica L. Knipler,&nbsp;Tracey L. Kreplins,&nbsp;Kiara L. L'Herpiniere,&nbsp;William F. Laurance,&nbsp;Tyrone H. Lavery,&nbsp;Mark Le Pla,&nbsp;Lily Leahy,&nbsp;Ashley Leedman,&nbsp;Sarah Legge,&nbsp;Ana V. Leitão,&nbsp;Mike Letnic,&nbsp;Michael J. Liddell,&nbsp;Zoë E. Lieb,&nbsp;Grant D. Linley,&nbsp;Allan T. Lisle,&nbsp;Cheryl A. Lohr,&nbsp;Natalya Maitz,&nbsp;Kieran D. Marshall,&nbsp;Rachel T. Mason,&nbsp;Daniela F. Matheus-Holland,&nbsp;Leo B. McComb,&nbsp;Peter J. McDonald,&nbsp;Hugh McGregor,&nbsp;Donald T. McKnight,&nbsp;Paul D. Meek,&nbsp;Vishnu Menon,&nbsp;Damian R. Michael,&nbsp;Charlotte H. Mills,&nbsp;Vivianna Miritis,&nbsp;Harry A. Moore,&nbsp;Helen R. Morgan,&nbsp;Brett P. Murphy,&nbsp;Andrew J. Murray,&nbsp;Daniel J. D. Natusch,&nbsp;Heather Neilly,&nbsp;Paul Nevill,&nbsp;Peggy Newman,&nbsp;Thomas M. Newsome,&nbsp;Dale G. Nimmo,&nbsp;Eric J. Nordberg,&nbsp;Terence W. O'Dwyer,&nbsp;Sally O'Neill,&nbsp;Julie M. Old,&nbsp;Katherine Oxenham,&nbsp;Matthew D. Pauza,&nbsp;Ange J. L. Pestell,&nbsp;Benjamin J. Pitcher,&nbsp;Christopher A. Pocknee,&nbsp;Hugh P. Possingham,&nbsp;Keren G. Raiter,&nbsp;Jacquie S. Rand,&nbsp;Matthew W. Rees,&nbsp;Anthony R. Rendall,&nbsp;Juanita Renwick,&nbsp;April Reside,&nbsp;Miranda Rew-Duffy,&nbsp;Euan G. Ritchie,&nbsp;Chris P. Roach,&nbsp;Alan Robley,&nbsp;Stefanie M. Rog,&nbsp;Tracy M. Rout,&nbsp;Thomas A. Schlacher,&nbsp;Cyril R. Scomparin,&nbsp;Holly Sitters,&nbsp;Deane A. Smith,&nbsp;Ruchira Somaweera,&nbsp;Emma E. Spencer,&nbsp;Rebecca E. Spindler,&nbsp;Alyson M. Stobo-Wilson,&nbsp;Danielle Stokeld,&nbsp;Louise M. Streeting,&nbsp;Duncan R. Sutherland,&nbsp;Patrick L. Taggart,&nbsp;Daniella Teixeira,&nbsp;Graham G. Thompson,&nbsp;Scott A. Thompson,&nbsp;Mary O. Thorpe,&nbsp;Stephanie J. Todd,&nbsp;Alison L. Towerton,&nbsp;Karl Vernes,&nbsp;Grace Waller,&nbsp;Glenda M. Wardle,&nbsp;Darcy J. Watchorn,&nbsp;Alexander W. T. Watson,&nbsp;Justin A. Welbergen,&nbsp;Michael A. Weston,&nbsp;Baptiste J. Wijas,&nbsp;Stephen E. Williams,&nbsp;Luke P. Woodford,&nbsp;Eamonn I. F. Wooster,&nbsp;Elizabeth Znidersic,&nbsp;Matthew S. Luskin","doi":"10.1111/brv.13152","DOIUrl":null,"url":null,"abstract":"<p>Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012–2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (<i>i</i>) synthesised information from a literature review; (<i>ii</i>) conducted an online questionnaire of 132 professionals; (<i>iii</i>) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (<i>iv</i>) mapped camera trap usage based on all sources. We predicted that the last decade would have shown: (<i>i</i>) exponentially increasing sampling effort, a continuation of camera usage trends up to 2012; (<i>ii</i>) analytics to have shifted from naive presence/absence and capture rates towards hierarchical modelling that accounts for imperfect detection, thereby improving the quality of outputs and inferences on occupancy, abundance, and density; and (<i>iii</i>) broader research scales in terms of multi-species, multi-site and multi-year studies. However, the results showed that the sampling effort has reached a plateau, with publication rates increasing only modestly. Users reported reaching a saturation point in terms of images that could be processed by humans and time for complex analyses and academic writing. There were strong taxonomic and geographic biases towards medium–large mammals (&gt;500 g) in forests along Australia's southeastern coastlines, reflecting proximity to major cities. Regarding analytical choices, bias-prone indices still accounted for ~50% of outputs and this was consistent across user groups. Multi-species, multi-site and multiple-year studies were rare, largely driven by hesitancy around collaboration and data sharing. There is no widely used repository for wildlife camera images and the Atlas of Living Australia (ALA) is the dominant repository for sharing tabular occurrence records. However, the ALA is presence-only and thus is unsuitable for creating detection histories with absences, inhibiting hierarchical modelling. Workshop discussions identified a pressing need for collaboration to enhance the efficiency, quality and scale of research and management outcomes, leading to the proposal of a Wildlife Observatory of Australia (WildObs). To encourage data standards and sharing, WildObs should (<i>i</i>) promote a metadata collection app; (<i>ii</i>) create a tagged image repository to facilitate artificial intelligence/machine learning (AI/ML) computer vision research in this space; (<i>iii</i>) address the image identification bottleneck <i>via</i> the use of AI/ML-powered image-processing platforms; (<i>iv</i>) create data commons for detection histories that are suitable for hierarchical modelling; and (<i>v</i>) provide capacity building and tools for hierarchical modelling. Our review highlights that while Australia's investments in monitoring biodiversity with cameras position it to be a global leader in this context, realising that potential requires a paradigm shift towards best practices for collecting, curating, sharing and analysing ‘Big Data’. Our findings and framework have broad applicability outside Australia to enhance camera usage to meet conservation and management objectives ranging from local to global scales. This review articulates a country/continental observatory approach that is also suitable for international collaborative wildlife research networks.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":"100 2","pages":"530-555"},"PeriodicalIF":11.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/brv.13152","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/brv.13152","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012–2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (i) synthesised information from a literature review; (ii) conducted an online questionnaire of 132 professionals; (iii) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources. We predicted that the last decade would have shown: (i) exponentially increasing sampling effort, a continuation of camera usage trends up to 2012; (ii) analytics to have shifted from naive presence/absence and capture rates towards hierarchical modelling that accounts for imperfect detection, thereby improving the quality of outputs and inferences on occupancy, abundance, and density; and (iii) broader research scales in terms of multi-species, multi-site and multi-year studies. However, the results showed that the sampling effort has reached a plateau, with publication rates increasing only modestly. Users reported reaching a saturation point in terms of images that could be processed by humans and time for complex analyses and academic writing. There were strong taxonomic and geographic biases towards medium–large mammals (>500 g) in forests along Australia's southeastern coastlines, reflecting proximity to major cities. Regarding analytical choices, bias-prone indices still accounted for ~50% of outputs and this was consistent across user groups. Multi-species, multi-site and multiple-year studies were rare, largely driven by hesitancy around collaboration and data sharing. There is no widely used repository for wildlife camera images and the Atlas of Living Australia (ALA) is the dominant repository for sharing tabular occurrence records. However, the ALA is presence-only and thus is unsuitable for creating detection histories with absences, inhibiting hierarchical modelling. Workshop discussions identified a pressing need for collaboration to enhance the efficiency, quality and scale of research and management outcomes, leading to the proposal of a Wildlife Observatory of Australia (WildObs). To encourage data standards and sharing, WildObs should (i) promote a metadata collection app; (ii) create a tagged image repository to facilitate artificial intelligence/machine learning (AI/ML) computer vision research in this space; (iii) address the image identification bottleneck via the use of AI/ML-powered image-processing platforms; (iv) create data commons for detection histories that are suitable for hierarchical modelling; and (v) provide capacity building and tools for hierarchical modelling. Our review highlights that while Australia's investments in monitoring biodiversity with cameras position it to be a global leader in this context, realising that potential requires a paradigm shift towards best practices for collecting, curating, sharing and analysing ‘Big Data’. Our findings and framework have broad applicability outside Australia to enhance camera usage to meet conservation and management objectives ranging from local to global scales. This review articulates a country/continental observatory approach that is also suitable for international collaborative wildlife research networks.

Abstract Image

使用相机陷阱的大规模和长期野生动物研究和监测:大陆综合。
相机陷阱在野生动物研究和监测中被广泛使用,因此必须了解它们的优势、局限性和潜在的日益增加的影响。我们调查了十年来野生动物相机(2012-2022)的使用情况,并使用多方面的方法对澳大利亚陆生脊椎动物进行了案例研究。我们(i)从文献综述中综合信息;(ii)对132名专业人士进行网上问卷调查;(iii)举办由28位代表学术界、非政府机构和政府的主要专家参加的面对面研讨会;(iv)根据所有来源绘制相机陷阱使用情况。我们预测,过去十年将显示:(i)采样工作呈指数级增长,相机使用趋势将持续到2012年;(ii)分析从单纯的存在/不存在和捕获率转向分层模型,这种模型解释了不完善的检测,从而提高了产出的质量和对占用、丰度和密度的推断;(3)在多物种、多地点和多年研究方面,研究规模更大。然而,结果表明,抽样工作已经达到了一个平台,发表率只有适度的增长。用户报告说,在可以由人类处理的图像和用于复杂分析和学术写作的时间方面,达到了饱和点。在澳大利亚东南海岸线的森林中,有强烈的分类学和地理倾向于大中型哺乳动物(体重在500克左右),这反映出它们靠近主要城市。关于分析选择,容易产生偏差的指数仍然占产出的50%左右,这在用户群体中是一致的。多物种、多地点和多年的研究很少,主要是由于对合作和数据共享的犹豫。目前还没有广泛使用的野生动物相机图像存储库,而澳大利亚生活地图集(ALA)是共享表格发生记录的主要存储库。然而,ALA是仅存在的,因此不适合创建具有缺席的检测历史,从而抑制了分层建模。研讨会讨论确定了迫切需要开展合作,以提高研究和管理成果的效率、质量和规模,从而提出了建立澳大利亚野生动物观测站(WildObs)的建议。为了鼓励数据标准和共享,WildObs应该(i)推广元数据收集应用程序;(ii)创建标记图像库,以促进该领域的人工智能/机器学习(AI/ML)计算机视觉研究;(iii)通过使用人工智能/机器学习驱动的图像处理平台解决图像识别瓶颈;(iv)为适合分层建模的检测历史创建数据共享;(v)为分层建模提供能力建设和工具。我们的审查强调,虽然澳大利亚在用相机监测生物多样性方面的投资使其成为这方面的全球领导者,但要实现这一潜力,需要向收集、管理、共享和分析“大数据”的最佳实践模式转变。我们的研究结果和框架在澳大利亚以外有广泛的适用性,可以提高相机的使用,以满足从地方到全球范围的保护和管理目标。这篇综述阐明了一种国家/大陆观测站方法,这种方法也适用于国际野生动物合作研究网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Reviews
Biological Reviews 生物-生物学
CiteScore
21.30
自引率
2.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly. The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions. The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field. Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信