Macro/Microgel-Encapsulated, Biofilm-Armored Living Probiotic Platform for Regenerating Bacteria-Infected Diabetic Wounds.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Huilong Xin, Zhe Cai, Jiahui Hao, Jing An, Yi Li, Min Wen, Zhaojun Jia
{"title":"Macro/Microgel-Encapsulated, Biofilm-Armored Living Probiotic Platform for Regenerating Bacteria-Infected Diabetic Wounds.","authors":"Huilong Xin, Zhe Cai, Jiahui Hao, Jing An, Yi Li, Min Wen, Zhaojun Jia","doi":"10.1002/adhm.202403476","DOIUrl":null,"url":null,"abstract":"<p><p>Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent \"living bacterial therapy\" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated. The platform is constructed employing a \"macrogel/microgel/biofilm\" hierarchical encapsulation strategy, with Lactobacillus casei as the model probiotic. Alginate gels, in both macro and micro forms, along with self-produced probiotic biofilms, served as encapsulating agents. Specifically, live probiotics are enclosed within alginate microspheres, embedded into an alginate bulk matrix, and cultivated to facilitate biofilm self-encasing. This multiscale confinement protected the probiotics and averted their inadvertent escape, while enabling sustained secretion, proper reservation, and localized delivery of therapeutically active probiotic metabolites, such as lactic acid. The resulting biosystem, as validated in vitro/ovo/vivo, elicited well-balanced antibacterial activities and biological compatibility, alongside prominent pro-healing, vasculogenic and anti-inflammatory potencies, thus accelerating the regeneration of infected full-thickness excisional wounds in diabetic mice. Such multiple encapsulation-engineered \"all-in-one\" probiotic delivery tactic may shed new light on the safe and efficient adoption of live bacteria for treating chronic infectious diseases.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403476"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403476","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated. The platform is constructed employing a "macrogel/microgel/biofilm" hierarchical encapsulation strategy, with Lactobacillus casei as the model probiotic. Alginate gels, in both macro and micro forms, along with self-produced probiotic biofilms, served as encapsulating agents. Specifically, live probiotics are enclosed within alginate microspheres, embedded into an alginate bulk matrix, and cultivated to facilitate biofilm self-encasing. This multiscale confinement protected the probiotics and averted their inadvertent escape, while enabling sustained secretion, proper reservation, and localized delivery of therapeutically active probiotic metabolites, such as lactic acid. The resulting biosystem, as validated in vitro/ovo/vivo, elicited well-balanced antibacterial activities and biological compatibility, alongside prominent pro-healing, vasculogenic and anti-inflammatory potencies, thus accelerating the regeneration of infected full-thickness excisional wounds in diabetic mice. Such multiple encapsulation-engineered "all-in-one" probiotic delivery tactic may shed new light on the safe and efficient adoption of live bacteria for treating chronic infectious diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信