Hyeonmin Jeong, Junsi Gu, Paul Mwasame, Kshitish Patankar, Decai Yu, Charles E Sing
{"title":"The effect of selective surface interaction on polymer phase separation with explicit polydispersity during polymerization.","authors":"Hyeonmin Jeong, Junsi Gu, Paul Mwasame, Kshitish Patankar, Decai Yu, Charles E Sing","doi":"10.1039/d4sm01077a","DOIUrl":null,"url":null,"abstract":"<p><p>In polymerization-induced phase separation, the impact of polymer-substrate interaction on the dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials as the surface can act as another driving force for phase separation other than polymerization. We modify the previously-developed polymerizing Cahn-Hilliard (pCH) method by adding a surface potential to model the phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization in the presence of a surface. In our approach, we explicitly model polydispersity by separately considering different molecular-weight components with their own respective diffusion constants, and with the surface potential preferentially acting on only one species. We first show that the surface potential induces faster phase separation of smaller molecules at early stages before the degree of polymerization becomes large enough to drive bulk phase separation. This model is then used to investigate the degree of anisotropic ordering in a direction perpendicular to the surface over various polymerization rates <i>k̃</i> and strengths of the potential <i>Ṽ</i>. We find that at low <i>k̃</i>, smaller molecules have sufficient time to diffuse and accumulate at the potential surface, resulting in richer production of heavier polymers at the surface without the need for larger polymers to diffuse on their own toward the surface. Conversely, at high <i>k̃</i>, larger polymers first evenly accumulate throughout the system before undergoing phase separation; the concentration wave initiated from the potential surface then propagates into the bulk, resulting in anisotropic phase separation.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01077a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In polymerization-induced phase separation, the impact of polymer-substrate interaction on the dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials as the surface can act as another driving force for phase separation other than polymerization. We modify the previously-developed polymerizing Cahn-Hilliard (pCH) method by adding a surface potential to model the phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization in the presence of a surface. In our approach, we explicitly model polydispersity by separately considering different molecular-weight components with their own respective diffusion constants, and with the surface potential preferentially acting on only one species. We first show that the surface potential induces faster phase separation of smaller molecules at early stages before the degree of polymerization becomes large enough to drive bulk phase separation. This model is then used to investigate the degree of anisotropic ordering in a direction perpendicular to the surface over various polymerization rates k̃ and strengths of the potential Ṽ. We find that at low k̃, smaller molecules have sufficient time to diffuse and accumulate at the potential surface, resulting in richer production of heavier polymers at the surface without the need for larger polymers to diffuse on their own toward the surface. Conversely, at high k̃, larger polymers first evenly accumulate throughout the system before undergoing phase separation; the concentration wave initiated from the potential surface then propagates into the bulk, resulting in anisotropic phase separation.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.