A Spiro-Based NIR-II Photosensitizer with Efficient ROS Generation and Thermal Conversion Performances for Imaging-Guided Tumor Theranostics.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yu-Kun Jin, Kang Xu, Bao-Yi Ren, Jinjun Shao, Chang-Jin Ou, Ling-Hai Xie
{"title":"A Spiro-Based NIR-II Photosensitizer with Efficient ROS Generation and Thermal Conversion Performances for Imaging-Guided Tumor Theranostics.","authors":"Yu-Kun Jin, Kang Xu, Bao-Yi Ren, Jinjun Shao, Chang-Jin Ou, Ling-Hai Xie","doi":"10.1002/adhm.202404783","DOIUrl":null,"url":null,"abstract":"<p><p>Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration. SFX-IC-based nanoparticles (NPs) display a high molar extinction coefficient of 7.05 × 10<sup>4</sup> m<sup>‒1</sup> cm<sup>-1</sup> at 645 nm due to strong intramolecular charge-transfer characteristics. As expected, the as-prepared NPs show strong NIR-II emission with a fluorescence quantum yield of 1.1%, thanks to the spiro-configuration that suppressing excessively intermolecular π-π stacking. Furthermore, SFX-IC NPs not only efficiently generate <sup>1</sup>O<sub>2</sub> and O<sup>∙-</sup> <sub>2</sub> under 660 nm laser irradiation, but also possess good photothermal effect with photothermal conversion efficiency of 47.14%. Consequently, SFX-IC NPs can be served as versatile phototheranostic agents for NIR-II fluorescence/photoacoustic imaging-guided phototherapy, manifesting that the spiro-functionalized strategy is a powerful tool to construct efficient NIR-II emitting PSs.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404783"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404783","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration. SFX-IC-based nanoparticles (NPs) display a high molar extinction coefficient of 7.05 × 104 m‒1 cm-1 at 645 nm due to strong intramolecular charge-transfer characteristics. As expected, the as-prepared NPs show strong NIR-II emission with a fluorescence quantum yield of 1.1%, thanks to the spiro-configuration that suppressing excessively intermolecular π-π stacking. Furthermore, SFX-IC NPs not only efficiently generate 1O2 and O∙- 2 under 660 nm laser irradiation, but also possess good photothermal effect with photothermal conversion efficiency of 47.14%. Consequently, SFX-IC NPs can be served as versatile phototheranostic agents for NIR-II fluorescence/photoacoustic imaging-guided phototherapy, manifesting that the spiro-functionalized strategy is a powerful tool to construct efficient NIR-II emitting PSs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信