Quantum Dot Erythropoietin Bioconjugates Enhance EPO-Receptor Clustering on Transfected Human Embryonic Kidney Cells.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Ryan N Porell, Okhil K Nag, Michael H Stewart, Kimihiro Susumu, Eunkeu Oh, James B Delehanty
{"title":"Quantum Dot Erythropoietin Bioconjugates Enhance EPO-Receptor Clustering on Transfected Human Embryonic Kidney Cells.","authors":"Ryan N Porell, Okhil K Nag, Michael H Stewart, Kimihiro Susumu, Eunkeu Oh, James B Delehanty","doi":"10.1021/acs.bioconjchem.4c00521","DOIUrl":null,"url":null,"abstract":"<p><p>Erythropoietin (EPO)-induced cellular signaling through the EPO receptor (EPOR) is a fundamental pathway for the modulation of cellular behavior and activity. In our previous work, we showed in primary human astrocytes that the multivalent display of EPO on the surface of semiconductor quantum dots (QDs) mediates augmented JAK/STAT signaling, a concomitant 1.8-fold increase in the expression of aquaporin-4 (AQPN-4) channel proteins, and a 2-fold increase in the AQPN-4-mediated water transport activity. Our hypothesis is that this enhanced signaling involves the simultaneous ligation and clustering of EPOR by QD-EPO conjugates. Here, we utilized a human embryonic kidney (HEK 293T/17) cell line transfected with EPOR fused to enhanced green fluorescent protein (eGFP) to visualize EPOR clustering. We demonstrate that QDs displaying five copies of EPO (bearing a C-terminal 6-histidine tract) on the nanoparticle surface induce a 1.8-fold increase in EPOR clustering compared to monomeric EPO at the same concentration. Our findings confirm the critical role played by the multivalent display of EPO in mediating clustering of the EPOR. More generally, these results illustrate the capability of nanoparticle-growth factor bioconjugates to control the activity of cognate receptors and the important role played by multivalent display in the modulation of selective cellular delivery and signaling.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00521","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Erythropoietin (EPO)-induced cellular signaling through the EPO receptor (EPOR) is a fundamental pathway for the modulation of cellular behavior and activity. In our previous work, we showed in primary human astrocytes that the multivalent display of EPO on the surface of semiconductor quantum dots (QDs) mediates augmented JAK/STAT signaling, a concomitant 1.8-fold increase in the expression of aquaporin-4 (AQPN-4) channel proteins, and a 2-fold increase in the AQPN-4-mediated water transport activity. Our hypothesis is that this enhanced signaling involves the simultaneous ligation and clustering of EPOR by QD-EPO conjugates. Here, we utilized a human embryonic kidney (HEK 293T/17) cell line transfected with EPOR fused to enhanced green fluorescent protein (eGFP) to visualize EPOR clustering. We demonstrate that QDs displaying five copies of EPO (bearing a C-terminal 6-histidine tract) on the nanoparticle surface induce a 1.8-fold increase in EPOR clustering compared to monomeric EPO at the same concentration. Our findings confirm the critical role played by the multivalent display of EPO in mediating clustering of the EPOR. More generally, these results illustrate the capability of nanoparticle-growth factor bioconjugates to control the activity of cognate receptors and the important role played by multivalent display in the modulation of selective cellular delivery and signaling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信