Effect of Lipidation on the Structure, Oligomerization, and Aggregation of Glucagon-like Peptide 1.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Eva Přadá Brichtová, Irina A Edu, Xinyang Li, Frederik Becher, Ana L Gomes Dos Santos, Sophie E Jackson
{"title":"Effect of Lipidation on the Structure, Oligomerization, and Aggregation of Glucagon-like Peptide 1.","authors":"Eva Přadá Brichtová, Irina A Edu, Xinyang Li, Frederik Becher, Ana L Gomes Dos Santos, Sophie E Jackson","doi":"10.1021/acs.bioconjchem.4c00484","DOIUrl":null,"url":null,"abstract":"<p><p>Lipidated analogues of glucagon-like peptide 1 (GLP-1) have gained enormous attention as long-acting peptide therapeutics for type 2 diabetes and also antiobesity treatment. Commercially available therapeutic lipidated GLP-1 analogues, semaglutide and liraglutide, have the great advantage of prolonged half-lives <i>in vivo</i> of hours and days instead of minutes as is the case for native GLP-1. A crucial factor in the development of novel lipidated therapeutic peptides is their physical stability, which greatly influences manufacturing and drug product development. This work provides a systematic study of the solubility, structure, oligomerization, and long-term stability of five different lipidated analogues of GLP-1, varying in the position of the lipidation site and the nature of lipid attachment. The lipidation was found to negatively impact the peptide solubility, in all cases, limiting it to a specific pH range. An increase in the α-helical secondary structure was observed upon lipidation, and the lipidated analogues were found to form larger and more stable oligomeric species compared to nonlipidated GLP-1. Importantly, the distributions and populations of oligomeric species formed were regulated by both the position and the nature of the lipidation. During the 6 days of sample aging, several lipidated analogues formed aggregates with variable morphologies ranging from elongated mature fibrils to amorphous structures. The kinetics of aggregation often showed multiple steps and did not follow a standard nucleation-propagation mechanism. A wide range of behaviors was observed, and while our observations indicate that the formation of a single stable oligomer results in the greatest physical stability, positioning the lipid group toward the N-terminus of the peptide results in extremely rapid amyloid formation. We believe that our study provides important findings for the development of long-acting lipidated analogues of peptide therapeutics.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00484","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Lipidated analogues of glucagon-like peptide 1 (GLP-1) have gained enormous attention as long-acting peptide therapeutics for type 2 diabetes and also antiobesity treatment. Commercially available therapeutic lipidated GLP-1 analogues, semaglutide and liraglutide, have the great advantage of prolonged half-lives in vivo of hours and days instead of minutes as is the case for native GLP-1. A crucial factor in the development of novel lipidated therapeutic peptides is their physical stability, which greatly influences manufacturing and drug product development. This work provides a systematic study of the solubility, structure, oligomerization, and long-term stability of five different lipidated analogues of GLP-1, varying in the position of the lipidation site and the nature of lipid attachment. The lipidation was found to negatively impact the peptide solubility, in all cases, limiting it to a specific pH range. An increase in the α-helical secondary structure was observed upon lipidation, and the lipidated analogues were found to form larger and more stable oligomeric species compared to nonlipidated GLP-1. Importantly, the distributions and populations of oligomeric species formed were regulated by both the position and the nature of the lipidation. During the 6 days of sample aging, several lipidated analogues formed aggregates with variable morphologies ranging from elongated mature fibrils to amorphous structures. The kinetics of aggregation often showed multiple steps and did not follow a standard nucleation-propagation mechanism. A wide range of behaviors was observed, and while our observations indicate that the formation of a single stable oligomer results in the greatest physical stability, positioning the lipid group toward the N-terminus of the peptide results in extremely rapid amyloid formation. We believe that our study provides important findings for the development of long-acting lipidated analogues of peptide therapeutics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信