Human-Validated Neural Networks for Precise Amastigote Categorization and Quantification to Accelerate Drug Discovery in Leishmaniasis.

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2024-12-24 eCollection Date: 2025-01-14 DOI:10.1021/acsomega.4c08735
Andrey Gaspar Sorrilha-Rodrigues, João Lucas Aparecido Rocha Paes, Yasmin Silva Rizk, Fernanda da Silva, Rafael Francisco Rosalem, Carla Cardozo Pinto de Arruda, Carlos Alexandre Carollo
{"title":"Human-Validated Neural Networks for Precise Amastigote Categorization and Quantification to Accelerate Drug Discovery in Leishmaniasis.","authors":"Andrey Gaspar Sorrilha-Rodrigues, João Lucas Aparecido Rocha Paes, Yasmin Silva Rizk, Fernanda da Silva, Rafael Francisco Rosalem, Carla Cardozo Pinto de Arruda, Carlos Alexandre Carollo","doi":"10.1021/acsomega.4c08735","DOIUrl":null,"url":null,"abstract":"<p><p>Leishmaniases present a significant global health challenge with limited and often inadequate treatment options available. Traditional microscopic methods for detecting Leishmania amastigotes are time-consuming and error-prone, highlighting the need for automated approaches. This study aimed to implement and validate the YOLOv8 deep learning model for real-time detection, quantification, and categorization of Leishmania amastigotes to enhance drug screening assays. YOLOv8 was trained on 470 images from two microscopes, classifying them into categories such as \"infected cells,\" \"intracellular amastigotes,\" \"uninfected cells,\" and \"edge cells.\" The model's performance was compared to human operators using Pearson and Spearman correlation analyses. YOLOv8 achieved strong performance in detecting \"infected cells\" (AUC = 0.934) and \"intracellular amastigotes\" (AUC = 0.846). However, challenges remained in differentiating extracellular amastigotes from background noise (AUC = 0.672). Despite these challenges, the YOLOv8 model effectively minimized human variability in drug screening, providing a reliable and efficient tool for the quantification and categorization of Leishmania amastigotes in drug discovery efforts. While further refinements are required to resolve misclassification issues, the model demonstrates significant potential in enhancing both accuracy and throughput in preclinical assays.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 1","pages":"1177-1187"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c08735","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Leishmaniases present a significant global health challenge with limited and often inadequate treatment options available. Traditional microscopic methods for detecting Leishmania amastigotes are time-consuming and error-prone, highlighting the need for automated approaches. This study aimed to implement and validate the YOLOv8 deep learning model for real-time detection, quantification, and categorization of Leishmania amastigotes to enhance drug screening assays. YOLOv8 was trained on 470 images from two microscopes, classifying them into categories such as "infected cells," "intracellular amastigotes," "uninfected cells," and "edge cells." The model's performance was compared to human operators using Pearson and Spearman correlation analyses. YOLOv8 achieved strong performance in detecting "infected cells" (AUC = 0.934) and "intracellular amastigotes" (AUC = 0.846). However, challenges remained in differentiating extracellular amastigotes from background noise (AUC = 0.672). Despite these challenges, the YOLOv8 model effectively minimized human variability in drug screening, providing a reliable and efficient tool for the quantification and categorization of Leishmania amastigotes in drug discovery efforts. While further refinements are required to resolve misclassification issues, the model demonstrates significant potential in enhancing both accuracy and throughput in preclinical assays.

人类验证的神经网络用于精确的无马鞭毛体分类和量化,以加速利什曼病药物的发现。
利什曼病是一项重大的全球卫生挑战,现有的治疗方案有限且往往不足。传统的显微镜检测利什曼原虫的方法耗时且容易出错,因此需要采用自动化方法。本研究旨在实施和验证YOLOv8深度学习模型,用于利什曼原虫的实时检测、定量和分类,以增强药物筛选分析。YOLOv8对来自两台显微镜的470张图像进行了训练,并将它们分为“感染细胞”、“细胞内无尾线虫”、“未感染细胞”和“边缘细胞”等类别。使用Pearson和Spearman相关分析将模型的性能与人类操作员进行比较。YOLOv8在检测“感染细胞”(AUC = 0.934)和“细胞内无尾线虫”(AUC = 0.846)方面表现优异。然而,从背景噪声中区分胞外无纺丝仍然存在挑战(AUC = 0.672)。尽管存在这些挑战,YOLOv8模型有效地减少了药物筛选中的人为变异,为药物发现工作中的利什曼原虫无鞭毛体的量化和分类提供了可靠和高效的工具。虽然需要进一步改进以解决错误分类问题,但该模型在提高临床前分析的准确性和吞吐量方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信