Mohamed Chellegui, Mahmoud Trabelsi, Benoît Champagne, Vincent Liégeois
{"title":"DFT Investigation of the Stereoselectivity of the Lewis-Acid-Catalyzed Diels-Alder Reaction between 2,5-Dimethylfuran and Acrolein.","authors":"Mohamed Chellegui, Mahmoud Trabelsi, Benoît Champagne, Vincent Liégeois","doi":"10.1021/acsomega.4c07888","DOIUrl":null,"url":null,"abstract":"<p><p>Density functional theory (DFT) has been enacted to study the Diels-Alder reaction between 2,5-dimethylfuran (2,5-DMF), a direct product of biomass transformation, and acrolein and to analyze its thermodynamics, kinetics, and mechanism when catalyzed by a Lewis acid (LA), in comparison to the uncatalyzed reaction. The uncatalyzed reaction occurs via a typical one-step asynchronous process, corresponding to a normal electron demand (NED) mechanism, where acrolein is an electrophile whereas 2,5-DMF is a nucleophile. The small endo selectivity in solvents of low dielectric constants is replaced by a small exo selectivity in solvents with larger dielectric constants, such as DMSO. In the catalyzed process, the LA interacts with acrolein, forming a O-LA coordinating bond, that enhances its electron-acceptor character, further favoring the NED mechanism and reducing the activation energy. When AlCl<sub>3</sub> and GaCl<sub>3</sub> catalyze the reaction, the bond formations of both the endo and exo pathways occur via a two-step asynchronous process. Thus, these processes involve the formation of two transition states and a stable intermediate. The second transition state is the critical one and it dictates the increase of the exo selectivity, in comparison to the uncatalyzed reaction. The DFT calculations have also unraveled that the LA plays additional roles, i.e. it forms stable complexes with the carbonyl group of acrolein while AlCl<sub>3</sub> and GaCl<sub>3</sub> form dimers, which also impact the different equilibria.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 1","pages":"833-847"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c07888","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Density functional theory (DFT) has been enacted to study the Diels-Alder reaction between 2,5-dimethylfuran (2,5-DMF), a direct product of biomass transformation, and acrolein and to analyze its thermodynamics, kinetics, and mechanism when catalyzed by a Lewis acid (LA), in comparison to the uncatalyzed reaction. The uncatalyzed reaction occurs via a typical one-step asynchronous process, corresponding to a normal electron demand (NED) mechanism, where acrolein is an electrophile whereas 2,5-DMF is a nucleophile. The small endo selectivity in solvents of low dielectric constants is replaced by a small exo selectivity in solvents with larger dielectric constants, such as DMSO. In the catalyzed process, the LA interacts with acrolein, forming a O-LA coordinating bond, that enhances its electron-acceptor character, further favoring the NED mechanism and reducing the activation energy. When AlCl3 and GaCl3 catalyze the reaction, the bond formations of both the endo and exo pathways occur via a two-step asynchronous process. Thus, these processes involve the formation of two transition states and a stable intermediate. The second transition state is the critical one and it dictates the increase of the exo selectivity, in comparison to the uncatalyzed reaction. The DFT calculations have also unraveled that the LA plays additional roles, i.e. it forms stable complexes with the carbonyl group of acrolein while AlCl3 and GaCl3 form dimers, which also impact the different equilibria.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.