Marwa Abou-Taleb, Eslam R El-Sawy, Mohamed S Abdel-Aziz, Hosam El-Sayed
{"title":"Wool Fabric with an Improved Durable Biological Resistance Using a Coumarin Derivative.","authors":"Marwa Abou-Taleb, Eslam R El-Sawy, Mohamed S Abdel-Aziz, Hosam El-Sayed","doi":"10.1021/acsabm.4c01786","DOIUrl":null,"url":null,"abstract":"<p><p>Wool is the most widely used proteinic natural fiber in the clothing industry by virtue of its versatile properties. Unfortunately, wool, as a natural fiber, is more susceptible to attack by microorganisms and moths, which may cause harm to the fiber and human health. That is why the antimicrobial and mothproof finishing of natural textiles is of prime importance to the textile and clothing industry. Herein, wool fabric was treated with the synthesized 6-aminocoumarin adopting the pad-dry-cure technique with or without a cross-linker. The treated wool fabric was evaluated for its antimicrobial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. The treated wool fabric was also tested for moth-proofing performance against <i>Tineola Bisselliella</i> through assessing the fabric weight loss. Various analyses were conducted to assign the alteration in the structure of the treated wool fibers, viz., urea-bisulfite solubility, carboxylic content, Fourier transform infrared spectroscopy, and X-ray diffraction pattern (XRD). Scanning electron microscopy displayed the surface of wool fabric before and after treatment. Some physical and mechanical properties were also assessed. Results revealed that treated wool fabric showed a bacterial resistance to Gram +ve and Gram -ve bacteria, in addition to its improved resistance to moth larvae attack without deterioration in the fabric's inherent properties.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"1664-1674"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Wool is the most widely used proteinic natural fiber in the clothing industry by virtue of its versatile properties. Unfortunately, wool, as a natural fiber, is more susceptible to attack by microorganisms and moths, which may cause harm to the fiber and human health. That is why the antimicrobial and mothproof finishing of natural textiles is of prime importance to the textile and clothing industry. Herein, wool fabric was treated with the synthesized 6-aminocoumarin adopting the pad-dry-cure technique with or without a cross-linker. The treated wool fabric was evaluated for its antimicrobial activity against Staphylococcus aureus and Escherichia coli. The treated wool fabric was also tested for moth-proofing performance against Tineola Bisselliella through assessing the fabric weight loss. Various analyses were conducted to assign the alteration in the structure of the treated wool fibers, viz., urea-bisulfite solubility, carboxylic content, Fourier transform infrared spectroscopy, and X-ray diffraction pattern (XRD). Scanning electron microscopy displayed the surface of wool fabric before and after treatment. Some physical and mechanical properties were also assessed. Results revealed that treated wool fabric showed a bacterial resistance to Gram +ve and Gram -ve bacteria, in addition to its improved resistance to moth larvae attack without deterioration in the fabric's inherent properties.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.