Nimra Nisar, Anum Fareed, Syed Tatheer Alam Naqvi, Bibi Saima Zeb, Bilal Ahmad Zafar Amin, Ghazal Khurshid, Habiba Zaffar
{"title":"Biodegradation Study of Used Engine Oil by Free and Immobilized Cells of the <i>Pseudomonas oleovorans</i> Strain NMA and Their Growth Kinetics.","authors":"Nimra Nisar, Anum Fareed, Syed Tatheer Alam Naqvi, Bibi Saima Zeb, Bilal Ahmad Zafar Amin, Ghazal Khurshid, Habiba Zaffar","doi":"10.1021/acsomega.4c06964","DOIUrl":null,"url":null,"abstract":"<p><p>Used engine oil is considered to be one of the high-risk pollutants, and if introduced untreated in the environment, it threatens the whole ecosystem. Therefore, there is a need to find some rapid and efficient methods for the remediation of used engine oil. The present study aimed to isolate indigenous bacterial strains having the capability to degrade used engine oil. The enrichment technique was employed for the isolation of bacterial strains, which were identified by the 16S rRNA technique. As biosurfactants play a vital role in the degradation process, the activity was determined by standard protocols. The bacterial strain was isolated by the enrichment technique and identified as the <i>Pseudomonas oleovorans</i> strain NMA. The bacterial isolate has the ability to utilize used engine oil as the sole source of energy. The biodegradation experiment revealed that both free and immobilized cells degrade used engine oil, but immobilized cells showed the best biodegradation result, with 98-99% degradation efficiency in 7 days of incubation irrespective of all oil concentrations. For the analysis of degraded products, gas chromatography-mass spectrometry (GC-MS) was performed, which indicates that the treated samples do not carry the major engine components, i.e., methyl hexane, pyrene, and phytane, which confirmed that these were transformed by the bacterial activity. Monod kinetics further confirmed that the isolated bacterium utilizes used engine oil as the sole source of energy. These findings clearly indicate the potential of the bacterium NMA to degrade used engine oil with high kinetics, converting it into nontoxic products, and thus be a potential candidate for remediation at contaminated sites.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 1","pages":"541-549"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c06964","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Used engine oil is considered to be one of the high-risk pollutants, and if introduced untreated in the environment, it threatens the whole ecosystem. Therefore, there is a need to find some rapid and efficient methods for the remediation of used engine oil. The present study aimed to isolate indigenous bacterial strains having the capability to degrade used engine oil. The enrichment technique was employed for the isolation of bacterial strains, which were identified by the 16S rRNA technique. As biosurfactants play a vital role in the degradation process, the activity was determined by standard protocols. The bacterial strain was isolated by the enrichment technique and identified as the Pseudomonas oleovorans strain NMA. The bacterial isolate has the ability to utilize used engine oil as the sole source of energy. The biodegradation experiment revealed that both free and immobilized cells degrade used engine oil, but immobilized cells showed the best biodegradation result, with 98-99% degradation efficiency in 7 days of incubation irrespective of all oil concentrations. For the analysis of degraded products, gas chromatography-mass spectrometry (GC-MS) was performed, which indicates that the treated samples do not carry the major engine components, i.e., methyl hexane, pyrene, and phytane, which confirmed that these were transformed by the bacterial activity. Monod kinetics further confirmed that the isolated bacterium utilizes used engine oil as the sole source of energy. These findings clearly indicate the potential of the bacterium NMA to degrade used engine oil with high kinetics, converting it into nontoxic products, and thus be a potential candidate for remediation at contaminated sites.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.