Identification of Key Amino Acids in the A Domains of Polymyxin Synthetase Responsible for 2,4-Diaminobutyric Acid Adenylation in Paenibacillus polymyxa NBRC3020 Strain.
Mai Nemoto, Wataru Ando, Taichi Mano, Minjae Lee, Satoshi Yuzawa, Toshihisa Mizuno
{"title":"Identification of Key Amino Acids in the A Domains of Polymyxin Synthetase Responsible for 2,4-Diaminobutyric Acid Adenylation in <i>Paenibacillus polymyxa</i> NBRC3020 Strain.","authors":"Mai Nemoto, Wataru Ando, Taichi Mano, Minjae Lee, Satoshi Yuzawa, Toshihisa Mizuno","doi":"10.1021/acschembio.4c00553","DOIUrl":null,"url":null,"abstract":"<p><p>Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by <i>Paenibacillus polymyxa</i> NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from <i>S. celluloflavus</i> USE31 and pddA from <i>S. hindustanus</i> NBRC15115), which remain exceedingly rare. The polymyxin synthetase in NBRC3020 contains five A domains specific to l-Dab, distributed across five distinct modules (modules 1, 3, 4, 5, 8, and 9). In this study, we successfully obtained soluble A domain proteins from modules 1, 5, 8, and 9 by preparing module-specific recombinant proteins. These proteins were expressed in <i>E. coli</i> BAP-1, purified via Ni-affinity chromatography, and demonstrated high specificity for l-Dab. Through sequence homology analysis, three-dimensional structural modeling, docking simulations to estimate substrate-binding sites, and functional validation using alanine mutants, we identified Glu281 and Asp344 as critical residues for recognizing the side chain amino group of l-Dab, and Asp238 as essential for recognizing its main chain amino group in the A domain. Notably, these key residues were conserved not only across the A domains in modules 1, 5, 8, and 9 of <i>P. polymyxa</i> NBRC3020 but also in those of the <i>P. polymyxa</i> PKB1 strain, as confirmed by sequence homology analysis. Interestingly, in pldA and pddA, the key residues involved in recognizing the side-chain amino group of l-Dab, which are conserved among polymyxin synthetases of NBRC3020 and PKB1 strain, were not observed. This suggests a potentially different mechanism for l-Dab recognition.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00553","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by Paenibacillus polymyxa NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from S. celluloflavus USE31 and pddA from S. hindustanus NBRC15115), which remain exceedingly rare. The polymyxin synthetase in NBRC3020 contains five A domains specific to l-Dab, distributed across five distinct modules (modules 1, 3, 4, 5, 8, and 9). In this study, we successfully obtained soluble A domain proteins from modules 1, 5, 8, and 9 by preparing module-specific recombinant proteins. These proteins were expressed in E. coli BAP-1, purified via Ni-affinity chromatography, and demonstrated high specificity for l-Dab. Through sequence homology analysis, three-dimensional structural modeling, docking simulations to estimate substrate-binding sites, and functional validation using alanine mutants, we identified Glu281 and Asp344 as critical residues for recognizing the side chain amino group of l-Dab, and Asp238 as essential for recognizing its main chain amino group in the A domain. Notably, these key residues were conserved not only across the A domains in modules 1, 5, 8, and 9 of P. polymyxa NBRC3020 but also in those of the P. polymyxa PKB1 strain, as confirmed by sequence homology analysis. Interestingly, in pldA and pddA, the key residues involved in recognizing the side-chain amino group of l-Dab, which are conserved among polymyxin synthetases of NBRC3020 and PKB1 strain, were not observed. This suggests a potentially different mechanism for l-Dab recognition.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.