{"title":"Innovating beyond electrophysiology through multimodal neural interfaces","authors":"Mehrdad Ramezani, Yundong Ren, Ertugrul Cubukcu, Duygu Kuzum","doi":"10.1038/s44287-024-00121-x","DOIUrl":null,"url":null,"abstract":"Neural circuits distributed across different brain regions mediate how neural information is processed and integrated, resulting in complex cognitive capabilities and behaviour. To understand dynamics and interactions of neural circuits, it is crucial to capture the complete spectrum of neural activity, ranging from the fast action potentials of individual neurons to the population dynamics driven by slow brain-wide oscillations. In this Review, we discuss how advances in electrical and optical recording technologies, coupled with the emergence of machine learning methodologies, present a unique opportunity to unravel the complex dynamics of the brain. Although great progress has been made in both electrical and optical neural recording technologies, these alone fail to provide a comprehensive picture of the neuronal activity with high spatiotemporal resolution. To address this challenge, multimodal experiments integrating the complementary advantages of different techniques hold great promise. However, they are still hindered by the absence of multimodal data analysis methods capable of providing unified and interpretable explanations of the complex neural dynamics distinctly encoded in these modalities. Combining multimodal studies with advanced data analysis methods will offer novel perspectives to address unresolved questions in basic neuroscience and to develop treatments for various neurological disorders. Flexible and transparent neural probes have facilitated the integration of electrical and optical neural recording techniques in multimodal experiments. Combining these studies with state-of-the-art computational methods would deepen our understanding of neural dynamics, advancing neuroscience and improving brain–computer interface systems.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"2 1","pages":"42-57"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44287-024-00121-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00121-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neural circuits distributed across different brain regions mediate how neural information is processed and integrated, resulting in complex cognitive capabilities and behaviour. To understand dynamics and interactions of neural circuits, it is crucial to capture the complete spectrum of neural activity, ranging from the fast action potentials of individual neurons to the population dynamics driven by slow brain-wide oscillations. In this Review, we discuss how advances in electrical and optical recording technologies, coupled with the emergence of machine learning methodologies, present a unique opportunity to unravel the complex dynamics of the brain. Although great progress has been made in both electrical and optical neural recording technologies, these alone fail to provide a comprehensive picture of the neuronal activity with high spatiotemporal resolution. To address this challenge, multimodal experiments integrating the complementary advantages of different techniques hold great promise. However, they are still hindered by the absence of multimodal data analysis methods capable of providing unified and interpretable explanations of the complex neural dynamics distinctly encoded in these modalities. Combining multimodal studies with advanced data analysis methods will offer novel perspectives to address unresolved questions in basic neuroscience and to develop treatments for various neurological disorders. Flexible and transparent neural probes have facilitated the integration of electrical and optical neural recording techniques in multimodal experiments. Combining these studies with state-of-the-art computational methods would deepen our understanding of neural dynamics, advancing neuroscience and improving brain–computer interface systems.