Neuromorphic computing at scale

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-01-22 DOI:10.1038/s41586-024-08253-8
Dhireesha Kudithipudi, Catherine Schuman, Craig M. Vineyard, Tej Pandit, Cory Merkel, Rajkumar Kubendran, James B. Aimone, Garrick Orchard, Christian Mayr, Ryad Benosman, Joe Hays, Cliff Young, Chiara Bartolozzi, Amitava Majumdar, Suma George Cardwell, Melika Payvand, Sonia Buckley, Shruti Kulkarni, Hector A. Gonzalez, Gert Cauwenberghs, Chetan Singh Thakur, Anand Subramoney, Steve Furber
{"title":"Neuromorphic computing at scale","authors":"Dhireesha Kudithipudi, Catherine Schuman, Craig M. Vineyard, Tej Pandit, Cory Merkel, Rajkumar Kubendran, James B. Aimone, Garrick Orchard, Christian Mayr, Ryad Benosman, Joe Hays, Cliff Young, Chiara Bartolozzi, Amitava Majumdar, Suma George Cardwell, Melika Payvand, Sonia Buckley, Shruti Kulkarni, Hector A. Gonzalez, Gert Cauwenberghs, Chetan Singh Thakur, Anand Subramoney, Steve Furber","doi":"10.1038/s41586-024-08253-8","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing is a brain-inspired approach to hardware and algorithm design that efficiently realizes artificial neural networks. Neuromorphic designers apply the principles of biointelligence discovered by neuroscientists to design efficient computational systems, often for applications with size, weight and power constraints. With this research field at a critical juncture, it is crucial to chart the course for the development of future large-scale neuromorphic systems. We describe approaches for creating scalable neuromorphic architectures and identify key features. We discuss potential applications that can benefit from scaling and the main challenges that need to be addressed. Furthermore, we examine a comprehensive ecosystem necessary to sustain growth and the new opportunities that lie ahead when scaling neuromorphic systems. Our work distils ideas from several computing sub-fields, providing guidance to researchers and practitioners of neuromorphic computing who aim to push the frontier forward. Approaches for the development of future at-scale neuromorphic systems based on principles of biointelligence are described, along with potential applications of scalable neuromorphic architectures and the challenges that need to be overcome.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"637 8047","pages":"801-812"},"PeriodicalIF":50.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08253-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic computing is a brain-inspired approach to hardware and algorithm design that efficiently realizes artificial neural networks. Neuromorphic designers apply the principles of biointelligence discovered by neuroscientists to design efficient computational systems, often for applications with size, weight and power constraints. With this research field at a critical juncture, it is crucial to chart the course for the development of future large-scale neuromorphic systems. We describe approaches for creating scalable neuromorphic architectures and identify key features. We discuss potential applications that can benefit from scaling and the main challenges that need to be addressed. Furthermore, we examine a comprehensive ecosystem necessary to sustain growth and the new opportunities that lie ahead when scaling neuromorphic systems. Our work distils ideas from several computing sub-fields, providing guidance to researchers and practitioners of neuromorphic computing who aim to push the frontier forward. Approaches for the development of future at-scale neuromorphic systems based on principles of biointelligence are described, along with potential applications of scalable neuromorphic architectures and the challenges that need to be overcome.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信