Dhireesha Kudithipudi, Catherine Schuman, Craig M. Vineyard, Tej Pandit, Cory Merkel, Rajkumar Kubendran, James B. Aimone, Garrick Orchard, Christian Mayr, Ryad Benosman, Joe Hays, Cliff Young, Chiara Bartolozzi, Amitava Majumdar, Suma George Cardwell, Melika Payvand, Sonia Buckley, Shruti Kulkarni, Hector A. Gonzalez, Gert Cauwenberghs, Chetan Singh Thakur, Anand Subramoney, Steve Furber
{"title":"Neuromorphic computing at scale","authors":"Dhireesha Kudithipudi, Catherine Schuman, Craig M. Vineyard, Tej Pandit, Cory Merkel, Rajkumar Kubendran, James B. Aimone, Garrick Orchard, Christian Mayr, Ryad Benosman, Joe Hays, Cliff Young, Chiara Bartolozzi, Amitava Majumdar, Suma George Cardwell, Melika Payvand, Sonia Buckley, Shruti Kulkarni, Hector A. Gonzalez, Gert Cauwenberghs, Chetan Singh Thakur, Anand Subramoney, Steve Furber","doi":"10.1038/s41586-024-08253-8","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing is a brain-inspired approach to hardware and algorithm design that efficiently realizes artificial neural networks. Neuromorphic designers apply the principles of biointelligence discovered by neuroscientists to design efficient computational systems, often for applications with size, weight and power constraints. With this research field at a critical juncture, it is crucial to chart the course for the development of future large-scale neuromorphic systems. We describe approaches for creating scalable neuromorphic architectures and identify key features. We discuss potential applications that can benefit from scaling and the main challenges that need to be addressed. Furthermore, we examine a comprehensive ecosystem necessary to sustain growth and the new opportunities that lie ahead when scaling neuromorphic systems. Our work distils ideas from several computing sub-fields, providing guidance to researchers and practitioners of neuromorphic computing who aim to push the frontier forward. Approaches for the development of future at-scale neuromorphic systems based on principles of biointelligence are described, along with potential applications of scalable neuromorphic architectures and the challenges that need to be overcome.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"637 8047","pages":"801-812"},"PeriodicalIF":50.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08253-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neuromorphic computing is a brain-inspired approach to hardware and algorithm design that efficiently realizes artificial neural networks. Neuromorphic designers apply the principles of biointelligence discovered by neuroscientists to design efficient computational systems, often for applications with size, weight and power constraints. With this research field at a critical juncture, it is crucial to chart the course for the development of future large-scale neuromorphic systems. We describe approaches for creating scalable neuromorphic architectures and identify key features. We discuss potential applications that can benefit from scaling and the main challenges that need to be addressed. Furthermore, we examine a comprehensive ecosystem necessary to sustain growth and the new opportunities that lie ahead when scaling neuromorphic systems. Our work distils ideas from several computing sub-fields, providing guidance to researchers and practitioners of neuromorphic computing who aim to push the frontier forward. Approaches for the development of future at-scale neuromorphic systems based on principles of biointelligence are described, along with potential applications of scalable neuromorphic architectures and the challenges that need to be overcome.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.