Kinetically controlled Z-alkene synthesis using iron-catalysed allene dialkylation

0 CHEMISTRY, MULTIDISCIPLINARY
Tong-De Tan, Kai Ze Tee, Xiaohua Luo, Peng-Cheng Qian, Xinglong Zhang, Ming Joo Koh
{"title":"Kinetically controlled Z-alkene synthesis using iron-catalysed allene dialkylation","authors":"Tong-De Tan, Kai Ze Tee, Xiaohua Luo, Peng-Cheng Qian, Xinglong Zhang, Ming Joo Koh","doi":"10.1038/s44160-024-00658-7","DOIUrl":null,"url":null,"abstract":"Stereodefined trisubstituted alkenes are key constituents of biologically active molecules and also serve as indispensable substrates for a wide range of stereospecific reactions affording sp3-hybridized skeletons. However, there is a persisting lack of methods that generate the thermodynamically less stable Z-isomers. Here we report an iron-catalysed multicomponent strategy that merges allenes, dialkylzinc compounds and haloalkanes to construct trisubstituted alkenes with excellent control of regioselectivity and Z-selectivity. Selective installation of diverse C(sp3) groups enables access to a broad library of functionalized unsaturated products. The synthetic utility of the method is highlighted through the synthesis of a glucosylceramide synthase inhibitor. Contrary to conventional mechanisms for metal-catalysed allene functionalization, our studies suggest a kinetically controlled pathway involving sequential radical-mediated alkylferration of the less hindered C=C bond and inner-sphere alkylation via reductive elimination. Mechanistic and computational investigations reveal the origins of the stereochemical outcome. Catalytic methods that generate Z-alkenes are rare due to the energetic favourability of the corresponding E-alkenes. Now, a bisphosphine–iron catalyst mediates the multicomponent dialkylation of allenes, using dialkylzinc reagents and alkyl halides, to selectively form functionalized trisubstituted Z-alkenes.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 1","pages":"116-123"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00658-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stereodefined trisubstituted alkenes are key constituents of biologically active molecules and also serve as indispensable substrates for a wide range of stereospecific reactions affording sp3-hybridized skeletons. However, there is a persisting lack of methods that generate the thermodynamically less stable Z-isomers. Here we report an iron-catalysed multicomponent strategy that merges allenes, dialkylzinc compounds and haloalkanes to construct trisubstituted alkenes with excellent control of regioselectivity and Z-selectivity. Selective installation of diverse C(sp3) groups enables access to a broad library of functionalized unsaturated products. The synthetic utility of the method is highlighted through the synthesis of a glucosylceramide synthase inhibitor. Contrary to conventional mechanisms for metal-catalysed allene functionalization, our studies suggest a kinetically controlled pathway involving sequential radical-mediated alkylferration of the less hindered C=C bond and inner-sphere alkylation via reductive elimination. Mechanistic and computational investigations reveal the origins of the stereochemical outcome. Catalytic methods that generate Z-alkenes are rare due to the energetic favourability of the corresponding E-alkenes. Now, a bisphosphine–iron catalyst mediates the multicomponent dialkylation of allenes, using dialkylzinc reagents and alkyl halides, to selectively form functionalized trisubstituted Z-alkenes.

Abstract Image

用铁催化烯二化反应动力学控制z -烯烃合成
立体三取代烯烃是生物活性分子的关键成分,也是广泛的立体特异性反应不可缺少的底物,提供sp3杂化骨架。然而,一直缺乏产生热力学不太稳定的z -异构体的方法。本文报道了一种铁催化的多组分策略,该策略将烯、二烷基锌化合物和卤代烷烃合并成三取代烯烃,具有良好的区域选择性和z选择性控制。选择性地安装不同的C(sp3)基团可以获得广泛的功能化不饱和产物库。通过葡萄糖神经酰胺合成酶抑制剂的合成,强调了该方法的合成实用性。与传统的金属催化烯功能化机制相反,我们的研究表明了一个动力学控制的途径,包括较少阻碍的C=C键的顺序自由基介导的烷基化和通过还原消除的内球烷基化。机械和计算研究揭示了立体化学结果的起源。由于相应的e -烯烃的能量优势,生成z -烯烃的催化方法是罕见的。现在,一种双膦-铁催化剂利用二烷基锌试剂和烷基卤化物介导烯的多组分二烷基化,选择性地形成功能化的三取代z -烯烃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信