{"title":"Catalyst and microenvironment design for more efficient ethanol electrosynthesis","authors":"","doi":"10.1038/s44160-024-00663-w","DOIUrl":null,"url":null,"abstract":"Simultaneously achieving high energy and carbon efficiency in ethanol electrosynthesis is challenging. Now, an interfacial cation matrix (ICM) is developed that modifies the catalyst microenvironment to increase these performance metrics towards multicarbon products in the acidic CO2 reduction reaction. Furthermore, combining a tailored Cu–Ag catalyst with the ICM facilitates selective ethanol electrosynthesis.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 1","pages":"13-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00663-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneously achieving high energy and carbon efficiency in ethanol electrosynthesis is challenging. Now, an interfacial cation matrix (ICM) is developed that modifies the catalyst microenvironment to increase these performance metrics towards multicarbon products in the acidic CO2 reduction reaction. Furthermore, combining a tailored Cu–Ag catalyst with the ICM facilitates selective ethanol electrosynthesis.