C. M. Liu, B. N. Zhao, J. B. Cao, C. J. Pollock, C. T. Russell, Y. Y. Liu, X. N. Xing, P. A. Linqvist, J. L. Burch
{"title":"Field–particle energy transfer during chorus emissions in space","authors":"C. M. Liu, B. N. Zhao, J. B. Cao, C. J. Pollock, C. T. Russell, Y. Y. Liu, X. N. Xing, P. A. Linqvist, J. L. Burch","doi":"10.1038/s41586-024-08402-z","DOIUrl":null,"url":null,"abstract":"Chorus waves are some of the strongest electromagnetic emissions naturally occurring in space and can cause radiation that is hazardous to humans and satellites1–3. Although chorus waves have attracted extreme interest and been intensively studied for decades4–7, their generation and evolution remain highly debated7. Here, in contrast to the conventional expectation that chorus waves are governed by planetary magnetic dipolar fields5,7, we report observations of repetitive, rising-tone chorus waves in the terrestrial neutral sheet, where the effects of the magnetic dipole are absent. Using high-cadence data from NASA’s MMS mission, we present ultrafast measurements of the wave fields and three-dimensional electron distributions within the waves, which provides evidence for chorus–electron interactions and the development of electron holes in the wave phase space. We found that the waves are associated with resonant currents antiparallel to the wave magnetic field, as predicted by nonlinear wave theory. We estimated the nonlinear field–particle energy transfer inside the waves, finding that the waves extract energy from local thermal electrons, in line with the positive growth rate of the waves derived from an instability analysis. Our observations may help to resolve long-standing controversies regarding chorus emissions and in gaining an understanding of the energy transport observed in space and astrophysical environments. Whistler-mode chorus waves have been observed in the tail region of the terrestrial magnetosphere, where the magnetic field is not dipolar so that chorus waves were not expected, and their generation mechanisms have been tested with state-of-the-art observations.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"637 8047","pages":"813-820"},"PeriodicalIF":50.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08402-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08402-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chorus waves are some of the strongest electromagnetic emissions naturally occurring in space and can cause radiation that is hazardous to humans and satellites1–3. Although chorus waves have attracted extreme interest and been intensively studied for decades4–7, their generation and evolution remain highly debated7. Here, in contrast to the conventional expectation that chorus waves are governed by planetary magnetic dipolar fields5,7, we report observations of repetitive, rising-tone chorus waves in the terrestrial neutral sheet, where the effects of the magnetic dipole are absent. Using high-cadence data from NASA’s MMS mission, we present ultrafast measurements of the wave fields and three-dimensional electron distributions within the waves, which provides evidence for chorus–electron interactions and the development of electron holes in the wave phase space. We found that the waves are associated with resonant currents antiparallel to the wave magnetic field, as predicted by nonlinear wave theory. We estimated the nonlinear field–particle energy transfer inside the waves, finding that the waves extract energy from local thermal electrons, in line with the positive growth rate of the waves derived from an instability analysis. Our observations may help to resolve long-standing controversies regarding chorus emissions and in gaining an understanding of the energy transport observed in space and astrophysical environments. Whistler-mode chorus waves have been observed in the tail region of the terrestrial magnetosphere, where the magnetic field is not dipolar so that chorus waves were not expected, and their generation mechanisms have been tested with state-of-the-art observations.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.