Lin Zhu, Shicong Yang, Dandan Wu, Keqiang Xie, Kuixian Wei, Wenhui Ma
{"title":"Quantum Chemical Simulation for the Adsorption Behavior of Silicon in Water and Surface Property Study","authors":"Lin Zhu, Shicong Yang, Dandan Wu, Keqiang Xie, Kuixian Wei, Wenhui Ma","doi":"10.1007/s12633-024-03180-9","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of the photovoltaic industry, the demand for crystalline silicon has significantly increased. Water-based waste slurry generated from silicon wafer cutting with diamond wire is a byproduct, presenting considerable potential for reutilization. However, the presence of moisture can lead to silicon oxidation and SiO<sub>2</sub> layer formation on the surface, hindering the recovery of high-purity silicon. In this study, the first-principles was employed for investigating the adsorption property of H<sub>2</sub>O on Si (111) and Si (100) surfaces, based on density functional theory. The results indicate that H<sub>2</sub>O can spontaneously adsorb on both the (111) and (100) surfaces of Silicon, and the affinity of H<sub>2</sub>O for the Si (111) surface being stronger than the Si (100) surface. Furthermore, Mulliken charge calculations and differential electron density analysis confirm that charge transfer of H, O and Si atoms occurs during the adsorption process between Si and H<sub>2</sub>O. The Si–O bonds formed on the Si (111) surface exhibit greater covalency compared to the Si (100) surface, suggesting that the Si (111) face is more susceptible to oxidation than the Si (100) face. This study provided theoretical insight into the adsorption of silicon in water at the atomic level, which is significant for deepening the understanding of silicon's oxidation mechanisms.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"17 1","pages":"39 - 49"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03180-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of the photovoltaic industry, the demand for crystalline silicon has significantly increased. Water-based waste slurry generated from silicon wafer cutting with diamond wire is a byproduct, presenting considerable potential for reutilization. However, the presence of moisture can lead to silicon oxidation and SiO2 layer formation on the surface, hindering the recovery of high-purity silicon. In this study, the first-principles was employed for investigating the adsorption property of H2O on Si (111) and Si (100) surfaces, based on density functional theory. The results indicate that H2O can spontaneously adsorb on both the (111) and (100) surfaces of Silicon, and the affinity of H2O for the Si (111) surface being stronger than the Si (100) surface. Furthermore, Mulliken charge calculations and differential electron density analysis confirm that charge transfer of H, O and Si atoms occurs during the adsorption process between Si and H2O. The Si–O bonds formed on the Si (111) surface exhibit greater covalency compared to the Si (100) surface, suggesting that the Si (111) face is more susceptible to oxidation than the Si (100) face. This study provided theoretical insight into the adsorption of silicon in water at the atomic level, which is significant for deepening the understanding of silicon's oxidation mechanisms.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.