{"title":"Polycaprolactone-Based Nanofibrous Scaffolds Containing Alendronate and Microfluidic-Prepared Gallic Acid-Loaded Chitosan Nanoparticles for Bone Tissue Engineering Applications","authors":"Farzad Moradikhah, Marzieh Jalali monfared, Masoumeh Foroutan Koudehi, Hossein Fasihi, Ramin Zibaseresht","doi":"10.1007/s12221-024-00769-0","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, we hypothesized that the presence of gallic acid as an additive antioxidant agent and alendronate can improve the osteogenic differentiation potency of human adipose mesenchymal stem cells, cultured on the scaffolds with fiber-microparticle structures. For this purpose, a combination of electrospinning and electrospraying techniques was employed to prepare a fiber-microparticle structure, composed of polycaprolactone (PCL)–alendronate (ALN) fibers/gallic acid-loaded chitosan nanoparticles (GNP) @ polyvinylpyrrolidone (PVP) microparticles. GNPs were fabricated by a cross-junction microfluidic device. By adjusting the gallic acid concentration, three types of GNPs were fabricated. The morphology of fabricated nanoparticles was quasi-sphere. %Loading efficiency increased by employing higher concentrations of gallic acid. According to dynamic light scattering results, the average hydrodynamic diameter of nanoparticles was between 213 and 217 nm. The impact of ALN concentration on the size and morphology of PCL electrospun scaffolds was separately investigated by SEM in which PCL/ALN 2.5% was selected for the next steps. The % porosity of all samples was around 62–68%. The release profile of ALN was slower than gallic acid. The % 1,1 diphenyl-2-picrylhydrazyl (DPPH) inhibition analysis showed that the presence of gallic acid could effectively improve the additive antioxidant properties of fabricated scaffolds. According to the MTT results, the presence of ALN could significantly improve the proliferation of human adipose mesenchymal stem cells. The alkaline phosphatase (ALP) activity and calcium deposition assessments on days 7, 14, and 21 and the evaluation of mRNA levels of ALP and osteopontin on days 7 and 14 confirmed the synergistic impact of gallic acid and ALN on osteogenic differentiation.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 1","pages":"111 - 124"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00769-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, we hypothesized that the presence of gallic acid as an additive antioxidant agent and alendronate can improve the osteogenic differentiation potency of human adipose mesenchymal stem cells, cultured on the scaffolds with fiber-microparticle structures. For this purpose, a combination of electrospinning and electrospraying techniques was employed to prepare a fiber-microparticle structure, composed of polycaprolactone (PCL)–alendronate (ALN) fibers/gallic acid-loaded chitosan nanoparticles (GNP) @ polyvinylpyrrolidone (PVP) microparticles. GNPs were fabricated by a cross-junction microfluidic device. By adjusting the gallic acid concentration, three types of GNPs were fabricated. The morphology of fabricated nanoparticles was quasi-sphere. %Loading efficiency increased by employing higher concentrations of gallic acid. According to dynamic light scattering results, the average hydrodynamic diameter of nanoparticles was between 213 and 217 nm. The impact of ALN concentration on the size and morphology of PCL electrospun scaffolds was separately investigated by SEM in which PCL/ALN 2.5% was selected for the next steps. The % porosity of all samples was around 62–68%. The release profile of ALN was slower than gallic acid. The % 1,1 diphenyl-2-picrylhydrazyl (DPPH) inhibition analysis showed that the presence of gallic acid could effectively improve the additive antioxidant properties of fabricated scaffolds. According to the MTT results, the presence of ALN could significantly improve the proliferation of human adipose mesenchymal stem cells. The alkaline phosphatase (ALP) activity and calcium deposition assessments on days 7, 14, and 21 and the evaluation of mRNA levels of ALP and osteopontin on days 7 and 14 confirmed the synergistic impact of gallic acid and ALN on osteogenic differentiation.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers