Microscopic Legendre Transform, Canonical Ensemble and Jaynes’ Maximum Entropy Principle

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Ramandeep S. Johal
{"title":"Microscopic Legendre Transform, Canonical Ensemble and Jaynes’ Maximum Entropy Principle","authors":"Ramandeep S. Johal","doi":"10.1007/s10701-025-00824-7","DOIUrl":null,"url":null,"abstract":"<div><p>Legendre transform between thermodynamic quantities such as the Helmholtz free energy and entropy plays a key role in the formulation of the canonical ensemble. In the standard treatment, the transform exchanges the independent variable from the system’s internal energy to its conjugate variable—the inverse temperature of the heat reservoir. In this article, we formulate a microscopic version of the transform between the free energy and Shannon entropy of the system, where the conjugate variables are the microstate probabilities and the energies (scaled by the inverse temperature). The present approach gives a non-conventional perspective on the connection between information-theoretic measure of entropy and thermodynamic entropy. We focus on the exact differential property of Shannon entropy, utilizing it to derive central relations within the canonical ensemble. Thermodynamics of a system in contact with the heat reservoir is discussed in this framework. Other approaches, in particular, Jaynes’ maximum entropy principle is compared with the present approach.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00824-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Legendre transform between thermodynamic quantities such as the Helmholtz free energy and entropy plays a key role in the formulation of the canonical ensemble. In the standard treatment, the transform exchanges the independent variable from the system’s internal energy to its conjugate variable—the inverse temperature of the heat reservoir. In this article, we formulate a microscopic version of the transform between the free energy and Shannon entropy of the system, where the conjugate variables are the microstate probabilities and the energies (scaled by the inverse temperature). The present approach gives a non-conventional perspective on the connection between information-theoretic measure of entropy and thermodynamic entropy. We focus on the exact differential property of Shannon entropy, utilizing it to derive central relations within the canonical ensemble. Thermodynamics of a system in contact with the heat reservoir is discussed in this framework. Other approaches, in particular, Jaynes’ maximum entropy principle is compared with the present approach.

微观勒让德变换、正则系综与杰恩斯最大熵原理
热力学量(如亥姆霍兹自由能和熵)之间的勒让德变换在正则系综的表述中起着关键作用。在标准处理中,变换将自变量从系统的内能转换为它的共轭变量——热源的逆温度。在本文中,我们给出了系统自由能和香农熵之间变换的微观版本,其中共轭变量是微观状态概率和能量(由逆温度缩放)。本方法对熵的信息论度量和热力学熵之间的联系给出了一个非常规的观点。我们关注香农熵的精确微分性质,利用它来推导正则系综中的中心关系。在这个框架中讨论了与热源接触的系统的热力学。并将其他方法,特别是Jaynes的最大熵原理与本方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信