Effect of talc modified by poly (glycidyl methacrylate)- block -polybutadiene- block -poly (glycidyl methacrylate) on the properties of nitrile butadiene rubber
{"title":"Effect of talc modified by poly (glycidyl methacrylate)- block -polybutadiene- block -poly (glycidyl methacrylate) on the properties of nitrile butadiene rubber","authors":"Guangyang He, Qilai Wang, Jianjian Tian, Bikuan Wang, Xianrong Shen, Yixin Xiang","doi":"10.1007/s42464-024-00286-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigated the reinforcement of nitrile butadiene rubber (NBR) using talcum powder modified with polybutadiene (M-Talc). To achieve this, a block copolymer of poly (glycidyl methacrylate)- <i>block</i> -polybutadiene- <i>block</i> -poly (glycidyl methacrylate) (PGMA-<i>b</i>-PB-<i>b</i>-PGMA) was synthesised via reversible addition-fragmentation chain transfer (RAFT) polymerisation. The PGMA-<i>b</i>-PB-<i>b</i>-PGMA solution was then sprayed onto talc powder (Talc) and dried, yielding the modified talc (M-Talc). Both M-Talc and Talc were subsequently incorporated into NBR. The results showed that NBR composites with M-Talc exhibited a notably slower vulcanisation rate compared to those with unmodified Talc. Additionally, M-Talc demonstrated improved dispersion within the NBR matrix. The mechanical properties of NBR/M-Talc composites were significantly enhanced, with a 30% increase in tensile strength, a 17% improvement in tear strength, and an impressive 757% boost in elongation at break. Furthermore, there was a substantial 37% reduction in the compression set.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 5","pages":"663 - 675"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-024-00286-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigated the reinforcement of nitrile butadiene rubber (NBR) using talcum powder modified with polybutadiene (M-Talc). To achieve this, a block copolymer of poly (glycidyl methacrylate)- block -polybutadiene- block -poly (glycidyl methacrylate) (PGMA-b-PB-b-PGMA) was synthesised via reversible addition-fragmentation chain transfer (RAFT) polymerisation. The PGMA-b-PB-b-PGMA solution was then sprayed onto talc powder (Talc) and dried, yielding the modified talc (M-Talc). Both M-Talc and Talc were subsequently incorporated into NBR. The results showed that NBR composites with M-Talc exhibited a notably slower vulcanisation rate compared to those with unmodified Talc. Additionally, M-Talc demonstrated improved dispersion within the NBR matrix. The mechanical properties of NBR/M-Talc composites were significantly enhanced, with a 30% increase in tensile strength, a 17% improvement in tear strength, and an impressive 757% boost in elongation at break. Furthermore, there was a substantial 37% reduction in the compression set.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.