Enhancing Nitric Oxide Gas Detection by Tuning the Structural Dimension of Electrospun ZnO Nanofibers Fibers and Polymers

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Niloufar Khomarloo, Hayriye Gidik, Roohollah Bagherzadeh, Masoud Latifi, Marc Debliquy, Ahmadou Ly, Driss Lahem, Elham Mohsenzadeh
{"title":"Enhancing Nitric Oxide Gas Detection by Tuning the Structural Dimension of Electrospun ZnO Nanofibers Fibers and Polymers","authors":"Niloufar Khomarloo,&nbsp;Hayriye Gidik,&nbsp;Roohollah Bagherzadeh,&nbsp;Masoud Latifi,&nbsp;Marc Debliquy,&nbsp;Ahmadou Ly,&nbsp;Driss Lahem,&nbsp;Elham Mohsenzadeh","doi":"10.1007/s12221-024-00823-x","DOIUrl":null,"url":null,"abstract":"<div><p>We report a systematic investigation into the optimization of ZnO nanofiber-based NO gas sensors through precise control of structural parameters. By employing electrospinning technique, we fabricated ZnO nanofibers with controlled diameters (160–310 nm) and thicknesses (19–25 μm), enabling detailed analysis of structure–property relationships in gas sensing performance. The sensors exhibited optimal performance at 200 °C operating temperature, with the thinnest membrane (160 μm) and smallest fiber diameter (9.52 μm) demonstrating superior sensing capabilities. Under these optimized conditions, the sensor achieved a remarkable sensitivity of 25 (Ω/Ω) toward 500 ppb NO gas with a notably fast recovery time of 191 s. Structural characterization revealed that reducing membrane thickness by 30% enhanced sensitivity by 96%, attributed to increased pore area accessibility. In addition, decreasing nanofiber diameter by 90% resulted in a twofold improvement in NO gas sensitivity. The sensing mechanism was elucidated through energy band analysis, revealing the critical role of electron depletion layer modulation at the gas–solid interface. The sensors demonstrated excellent selectivity against common interferents including ethanol, isopropanol, and acetone, with NO response approximately 84 times greater than these compounds. This study provides crucial insights into the rational design of metal oxide nanofiber architectures for enhanced gas sensing performance, offering potential applications in both industrial and biomedical monitoring systems.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 1","pages":"197 - 209"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00823-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

We report a systematic investigation into the optimization of ZnO nanofiber-based NO gas sensors through precise control of structural parameters. By employing electrospinning technique, we fabricated ZnO nanofibers with controlled diameters (160–310 nm) and thicknesses (19–25 μm), enabling detailed analysis of structure–property relationships in gas sensing performance. The sensors exhibited optimal performance at 200 °C operating temperature, with the thinnest membrane (160 μm) and smallest fiber diameter (9.52 μm) demonstrating superior sensing capabilities. Under these optimized conditions, the sensor achieved a remarkable sensitivity of 25 (Ω/Ω) toward 500 ppb NO gas with a notably fast recovery time of 191 s. Structural characterization revealed that reducing membrane thickness by 30% enhanced sensitivity by 96%, attributed to increased pore area accessibility. In addition, decreasing nanofiber diameter by 90% resulted in a twofold improvement in NO gas sensitivity. The sensing mechanism was elucidated through energy band analysis, revealing the critical role of electron depletion layer modulation at the gas–solid interface. The sensors demonstrated excellent selectivity against common interferents including ethanol, isopropanol, and acetone, with NO response approximately 84 times greater than these compounds. This study provides crucial insights into the rational design of metal oxide nanofiber architectures for enhanced gas sensing performance, offering potential applications in both industrial and biomedical monitoring systems.

Graphical abstract

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信