Simulation of a liquid drop on a soft substrate

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Yalda Poorhoshyar, Amir H. Fatollahi, Amir Aghamohammadi
{"title":"Simulation of a liquid drop on a soft substrate","authors":"Yalda Poorhoshyar,&nbsp;Amir H. Fatollahi,&nbsp;Amir Aghamohammadi","doi":"10.1140/epje/s10189-024-00470-3","DOIUrl":null,"url":null,"abstract":"<p>A liquid drop resting on a soft substrate is numerically simulated as an energy minimization problem. The elastic substrate is modeled as a cubic lattice of mass-springs, to which an energy term controlling the change of volume is associated. The interfacial energy between three phases of solid, liquid, and vapor is also introduced. Under the constant volume constraint of the liquid drop, the total energy of the system is subjected to a numerical minimization process by which profiles of both substrate and drop are obtained. The numerical simulation enables the modeling of the wetting setup with various parameters associated with solid and liquid phases, including the Young’s modulus and Poisson’s ratio of the solid, the surface tension of the three phases, and geometrical parameters such as the contact radius or thickness of the solid. The direct outputs of the minimization process are the displacements of the solid lattice and boundary points of the liquid, by which the behavior of all relevant quantities, such as contact angles in the three phases, as well as the effective surface tension of the solid, can be quantitatively studied. The resulting displacements of the solid are compared with the exact solution of the elasticity equation under the assumption of no tangential traction, and a quite satisfactory agreement is observed. However, at larger Young’s modulus or lower Poisson’s ratios the agreement between the numerical results and the analytical solutions is lost in the vicinity of the contact points. Interestingly, a non-zero tangential traction in the vicinity of contact points is calculated by the numerical outputs, indicating that the assumption of zero tangential traction is not valid generally around the contact points. The effective surface tension at the contact points is calculated for an incompressible solid substrate, showing a linear increase with respect to the Young’s modulus of the solid, as <span>\\(\\delta \\gamma =c\\,E\\)</span>.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00470-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A liquid drop resting on a soft substrate is numerically simulated as an energy minimization problem. The elastic substrate is modeled as a cubic lattice of mass-springs, to which an energy term controlling the change of volume is associated. The interfacial energy between three phases of solid, liquid, and vapor is also introduced. Under the constant volume constraint of the liquid drop, the total energy of the system is subjected to a numerical minimization process by which profiles of both substrate and drop are obtained. The numerical simulation enables the modeling of the wetting setup with various parameters associated with solid and liquid phases, including the Young’s modulus and Poisson’s ratio of the solid, the surface tension of the three phases, and geometrical parameters such as the contact radius or thickness of the solid. The direct outputs of the minimization process are the displacements of the solid lattice and boundary points of the liquid, by which the behavior of all relevant quantities, such as contact angles in the three phases, as well as the effective surface tension of the solid, can be quantitatively studied. The resulting displacements of the solid are compared with the exact solution of the elasticity equation under the assumption of no tangential traction, and a quite satisfactory agreement is observed. However, at larger Young’s modulus or lower Poisson’s ratios the agreement between the numerical results and the analytical solutions is lost in the vicinity of the contact points. Interestingly, a non-zero tangential traction in the vicinity of contact points is calculated by the numerical outputs, indicating that the assumption of zero tangential traction is not valid generally around the contact points. The effective surface tension at the contact points is calculated for an incompressible solid substrate, showing a linear increase with respect to the Young’s modulus of the solid, as \(\delta \gamma =c\,E\).

软基板上液滴的模拟
将液滴落在软基板上作为能量最小化问题进行数值模拟。将弹性衬底建模为质量弹簧的立方晶格,并与控制体积变化的能量项相关联。介绍了固、液、气三相的界面能。在液滴等体积约束下,对系统总能量进行了数值最小化处理,得到了基体和液滴的轮廓。数值模拟可以用与固相和液相相关的各种参数对润湿装置进行建模,包括固体的杨氏模量和泊松比、三相的表面张力以及固体的接触半径或厚度等几何参数。最小化过程的直接输出是固体晶格和液体边界点的位移,通过这些位移,可以定量地研究所有相关量的行为,例如三相中的接触角以及固体的有效表面张力。将所得的固体位移与弹性方程在无切向牵引力假设下的精确解进行了比较,得到了令人满意的结果。然而,在较大的杨氏模量或较低的泊松比下,在接触点附近,数值结果与解析解之间的一致性会丢失。有趣的是,数值输出计算了接触点附近的非零切向牵引力,表明接触点附近的零切向牵引力假设一般不成立。接触点处的有效表面张力计算为不可压缩的固体基材,显示出相对于固体的杨氏模量的线性增加,如\(\delta \gamma =c\,E\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信