Piezo-photothermal wave dynamics in an orthotropic hygrothermal semiconductor exposed to heat and moisture flux

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Kh. Lotfy, Ibrahim S. Elshazly, Borhen Halouani, Saurav Sharma, Eslam S. Elidy
{"title":"Piezo-photothermal wave dynamics in an orthotropic hygrothermal semiconductor exposed to heat and moisture flux","authors":"Kh. Lotfy,&nbsp;Ibrahim S. Elshazly,&nbsp;Borhen Halouani,&nbsp;Saurav Sharma,&nbsp;Eslam S. Elidy","doi":"10.1140/epjb/s10051-024-00852-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the interactions of piezoelectric, photothermal, and thermoelastic wave phenomena in orthotropic semiconductors subjected to thermal regulation via water. This study presents a model for coupling heat and moisture transport alongside photo-hydroelectricity. mechanical deformation induces the piezoelectric effect, initiating carrier density (plasma) waves by generating a polarization charge. At present, photothermal effects, caused by light absorption, facilitate the formation and propagation of plasma waves. The interplay of moisture and temperature under hygrothermal circumstances adds complexity to material behavior, affecting the formation and propagation of plasma waves. The normal mode technique produces analytical formulations for the transient response of temperature variation, moisture distribution, plasma, displacement, and stress components during continuous heat and moisture flow at the semiconductor surface. The research employs advanced mathematical techniques and computational simulations to demonstrate the influence of piezoelectricity, photothermal, and hygrothermal on primary physical field wave propagation. The numerical data is employed to graphically represent and calculate the hygrothermal fields and stress response in photo-hygrothermoelastic materials, including fluctuations in moisture content and time.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00852-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the interactions of piezoelectric, photothermal, and thermoelastic wave phenomena in orthotropic semiconductors subjected to thermal regulation via water. This study presents a model for coupling heat and moisture transport alongside photo-hydroelectricity. mechanical deformation induces the piezoelectric effect, initiating carrier density (plasma) waves by generating a polarization charge. At present, photothermal effects, caused by light absorption, facilitate the formation and propagation of plasma waves. The interplay of moisture and temperature under hygrothermal circumstances adds complexity to material behavior, affecting the formation and propagation of plasma waves. The normal mode technique produces analytical formulations for the transient response of temperature variation, moisture distribution, plasma, displacement, and stress components during continuous heat and moisture flow at the semiconductor surface. The research employs advanced mathematical techniques and computational simulations to demonstrate the influence of piezoelectricity, photothermal, and hygrothermal on primary physical field wave propagation. The numerical data is employed to graphically represent and calculate the hygrothermal fields and stress response in photo-hygrothermoelastic materials, including fluctuations in moisture content and time.

Graphical abstract

正交各向异性湿热半导体暴露于热和湿通量下的压电光热波动力学
本研究考察了经水热调节的正交各向异性半导体中压电、光热和热弹性波现象的相互作用。本文提出了一个光-水电耦合热湿输运模型。机械变形引起压电效应,通过产生极化电荷引发载流子密度(等离子体)波。目前,光吸收引起的光热效应有利于等离子体波的形成和传播。在湿热环境下,水分和温度的相互作用增加了材料行为的复杂性,影响了等离子体波的形成和传播。在半导体表面连续的热量和水分流动过程中,正常模式技术产生了温度变化、水分分布、等离子体、位移和应力分量的瞬态响应的解析公式。该研究采用先进的数学技术和计算模拟来证明压电、光热和湿热对初级物理场波传播的影响。利用数值数据对光湿热弹性材料的湿热场和应力响应进行了图形化表示和计算,包括含水率波动和时间波动。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信