{"title":"Comparative study of multivariate hybrid neural networks for global sea level prediction through 2050","authors":"Ihsan Uluocak","doi":"10.1007/s12665-025-12090-x","DOIUrl":null,"url":null,"abstract":"<div><p>The ongoing rise in global sea levels poses significant risks to coastal regions such as storms surges, floodings and necessitates accurate predictive models to inform the relevant government organizations that are responsible of mitigation strategies. This study leverages advanced hybrid deep learning techniques to forecast global sea level changes up to the year 2050. Utilizing a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, our model integrates historical global sea level data from climate.gov and global air temperature projections from the CMIP6 (Coupled Model Intercomparison Project Phase 6) model. Performance evaluation, based on metrics such as Nash-Sutcliffe Efficiency, Mean Squared Error (MSE), and the Diebold-Mariano Test, demonstrates the superior accuracy of the hybrid models over traditional deep learning models. Results show that the hybrid LSTM-CNN model outperforms the standalone models, achieving an MSE of 0.4644 mm and an NSE of 0.9994, compared to the LSTM model’s MSE of 2.4450 mm and NSE of 0.9970. These findings underscore the potential of deep learning methodologies in enhancing the precision of long-term sea level predictions, providing valuable insights for policymakers and researchers in climate science.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12665-025-12090-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12090-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ongoing rise in global sea levels poses significant risks to coastal regions such as storms surges, floodings and necessitates accurate predictive models to inform the relevant government organizations that are responsible of mitigation strategies. This study leverages advanced hybrid deep learning techniques to forecast global sea level changes up to the year 2050. Utilizing a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, our model integrates historical global sea level data from climate.gov and global air temperature projections from the CMIP6 (Coupled Model Intercomparison Project Phase 6) model. Performance evaluation, based on metrics such as Nash-Sutcliffe Efficiency, Mean Squared Error (MSE), and the Diebold-Mariano Test, demonstrates the superior accuracy of the hybrid models over traditional deep learning models. Results show that the hybrid LSTM-CNN model outperforms the standalone models, achieving an MSE of 0.4644 mm and an NSE of 0.9994, compared to the LSTM model’s MSE of 2.4450 mm and NSE of 0.9970. These findings underscore the potential of deep learning methodologies in enhancing the precision of long-term sea level predictions, providing valuable insights for policymakers and researchers in climate science.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.