Comparative study of multivariate hybrid neural networks for global sea level prediction through 2050

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Ihsan Uluocak
{"title":"Comparative study of multivariate hybrid neural networks for global sea level prediction through 2050","authors":"Ihsan Uluocak","doi":"10.1007/s12665-025-12090-x","DOIUrl":null,"url":null,"abstract":"<div><p>The ongoing rise in global sea levels poses significant risks to coastal regions such as storms surges, floodings and necessitates accurate predictive models to inform the relevant government organizations that are responsible of mitigation strategies. This study leverages advanced hybrid deep learning techniques to forecast global sea level changes up to the year 2050. Utilizing a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, our model integrates historical global sea level data from climate.gov and global air temperature projections from the CMIP6 (Coupled Model Intercomparison Project Phase 6) model. Performance evaluation, based on metrics such as Nash-Sutcliffe Efficiency, Mean Squared Error (MSE), and the Diebold-Mariano Test, demonstrates the superior accuracy of the hybrid models over traditional deep learning models. Results show that the hybrid LSTM-CNN model outperforms the standalone models, achieving an MSE of 0.4644 mm and an NSE of 0.9994, compared to the LSTM model’s MSE of 2.4450 mm and NSE of 0.9970. These findings underscore the potential of deep learning methodologies in enhancing the precision of long-term sea level predictions, providing valuable insights for policymakers and researchers in climate science.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12665-025-12090-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12090-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The ongoing rise in global sea levels poses significant risks to coastal regions such as storms surges, floodings and necessitates accurate predictive models to inform the relevant government organizations that are responsible of mitigation strategies. This study leverages advanced hybrid deep learning techniques to forecast global sea level changes up to the year 2050. Utilizing a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, our model integrates historical global sea level data from climate.gov and global air temperature projections from the CMIP6 (Coupled Model Intercomparison Project Phase 6) model. Performance evaluation, based on metrics such as Nash-Sutcliffe Efficiency, Mean Squared Error (MSE), and the Diebold-Mariano Test, demonstrates the superior accuracy of the hybrid models over traditional deep learning models. Results show that the hybrid LSTM-CNN model outperforms the standalone models, achieving an MSE of 0.4644 mm and an NSE of 0.9994, compared to the LSTM model’s MSE of 2.4450 mm and NSE of 0.9970. These findings underscore the potential of deep learning methodologies in enhancing the precision of long-term sea level predictions, providing valuable insights for policymakers and researchers in climate science.

多元混合神经网络在2050年全球海平面预测中的比较研究
全球海平面持续上升给沿海地区带来了风暴潮、洪水等重大风险,因此需要准确的预测模型,以便向负责减灾战略的相关政府组织提供信息。这项研究利用先进的混合深度学习技术来预测到2050年的全球海平面变化。利用卷积神经网络(CNN)和长短期记忆(LSTM)网络的组合,我们的模型整合了来自climate.gov的历史全球海平面数据和来自CMIP6(耦合模式比对项目第6阶段)模型的全球气温预测。基于Nash-Sutcliffe效率、均方误差(MSE)和Diebold-Mariano测试等指标的性能评估表明,混合模型比传统深度学习模型具有更高的准确性。结果表明,LSTM- cnn混合模型的MSE为0.4644 mm, NSE为0.9994,优于LSTM模型的MSE为2.4450 mm, NSE为0.9970。这些发现强调了深度学习方法在提高长期海平面预测精度方面的潜力,为气候科学领域的决策者和研究人员提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信