Bo Long, Qiongqiong Xing, Qian Zhang, Liying Deng, Qi Liu, Lintong Zhang, Fangfang Qu, Liwei Wang, Dapeng Ye, Zhanhui Yuan
{"title":"Exploring field effect transistor sensing devices in agricultural breeding environment: application prospects","authors":"Bo Long, Qiongqiong Xing, Qian Zhang, Liying Deng, Qi Liu, Lintong Zhang, Fangfang Qu, Liwei Wang, Dapeng Ye, Zhanhui Yuan","doi":"10.1007/s42114-024-01193-x","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of biosensing devices based on field effect transistor (FET) has been rapid, largely due to the simplicity of their operational mechanism, rapid response, ease of miniaturization, and integration. The preparation of field effect transistors using inorganic nanomaterials as channel materials has been extensively employed in biosensing applications, including assessing food quality and safety, environmental monitoring, and diagnosing biological diseases. The detection of disease-causing microorganisms, antibiotics, heavy metals, and harmful gases in modern agricultural breeding environments also necessitates the utilization of sensors that are able to achieving label-free, miniaturized, rapid, and specific detection. Biosensing devices based on field effect transistors are able to rapidly and specifically detect, meeting the needs of modern agricultural breeding environments for low-cost, accurate, miniaturized, and portable devices.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01193-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of biosensing devices based on field effect transistor (FET) has been rapid, largely due to the simplicity of their operational mechanism, rapid response, ease of miniaturization, and integration. The preparation of field effect transistors using inorganic nanomaterials as channel materials has been extensively employed in biosensing applications, including assessing food quality and safety, environmental monitoring, and diagnosing biological diseases. The detection of disease-causing microorganisms, antibiotics, heavy metals, and harmful gases in modern agricultural breeding environments also necessitates the utilization of sensors that are able to achieving label-free, miniaturized, rapid, and specific detection. Biosensing devices based on field effect transistors are able to rapidly and specifically detect, meeting the needs of modern agricultural breeding environments for low-cost, accurate, miniaturized, and portable devices.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.