A Novel Strategy to Control the Effective Strain Range for Yarn-Based Resistive Strain Sensor by Braiding Technology

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Fei Huang, Chen Huang, Fenye Meng, Kean Chin Aw, Xiong Yan, Jiyong Hu
{"title":"A Novel Strategy to Control the Effective Strain Range for Yarn-Based Resistive Strain Sensor by Braiding Technology","authors":"Fei Huang,&nbsp;Chen Huang,&nbsp;Fenye Meng,&nbsp;Kean Chin Aw,&nbsp;Xiong Yan,&nbsp;Jiyong Hu","doi":"10.1007/s12221-024-00821-z","DOIUrl":null,"url":null,"abstract":"<div><p>Yarn-based strain sensors are breaking the boundaries between flexible wearable electronics and smart clothing due to their unique functionality and weavability. The sensing strain range of most flexible strain sensors is less than its tensile range, and it is easy to exceed its sensing strain range during use, resulting in unstable performance and failure of the sensor. An effective-strain-range-controllable and wear-resistant yarn strain sensor was developed with a core-sheath braided structure with the sensing yarn as the core and the braided yarn as the shell. This design strain allows for control over the effective strain range by adjusting the core sensing yarn’s pre-stretch ratio and the outer braided layer’s structure. This prevents damage to the conductive network and sensor failure caused by excessive stretching during use. The sensitivity, linear sensing range, and hysteresis of the braided strain sensors are effectively adjusted by changing the braiding yarns’ braiding angle and the sensing yarn’s pre-stretch ratio. Additionally, the sensors’ appearance and texture can be customized by changing the colour and material of the braiding yarns, allowing these sensors to integrate seamlessly with the garment and enhance their aesthetics. Furthermore, when combined with elastic fabric bands, these sensors can be attached to various parts of the human body to monitor physiological information, such as respiration and movement. The braided structure design presents a versatile strategy that could be applied to other types of strain sensors, achieving stability, durability, and aesthetics simultaneously.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 1","pages":"433 - 446"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00821-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Yarn-based strain sensors are breaking the boundaries between flexible wearable electronics and smart clothing due to their unique functionality and weavability. The sensing strain range of most flexible strain sensors is less than its tensile range, and it is easy to exceed its sensing strain range during use, resulting in unstable performance and failure of the sensor. An effective-strain-range-controllable and wear-resistant yarn strain sensor was developed with a core-sheath braided structure with the sensing yarn as the core and the braided yarn as the shell. This design strain allows for control over the effective strain range by adjusting the core sensing yarn’s pre-stretch ratio and the outer braided layer’s structure. This prevents damage to the conductive network and sensor failure caused by excessive stretching during use. The sensitivity, linear sensing range, and hysteresis of the braided strain sensors are effectively adjusted by changing the braiding yarns’ braiding angle and the sensing yarn’s pre-stretch ratio. Additionally, the sensors’ appearance and texture can be customized by changing the colour and material of the braiding yarns, allowing these sensors to integrate seamlessly with the garment and enhance their aesthetics. Furthermore, when combined with elastic fabric bands, these sensors can be attached to various parts of the human body to monitor physiological information, such as respiration and movement. The braided structure design presents a versatile strategy that could be applied to other types of strain sensors, achieving stability, durability, and aesthetics simultaneously.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信