A Statistical Filament-Level Modeling of the Impact Behavior of Single and Multi-layer Woven Fabric

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Ying Ma, Chuan Peng, Sheng Lu, Congying Deng, Jiufei Luo, Xiang Chen
{"title":"A Statistical Filament-Level Modeling of the Impact Behavior of Single and Multi-layer Woven Fabric","authors":"Ying Ma,&nbsp;Chuan Peng,&nbsp;Sheng Lu,&nbsp;Congying Deng,&nbsp;Jiufei Luo,&nbsp;Xiang Chen","doi":"10.1007/s12221-024-00813-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the ballistic impact performance of the single and multi-layer 2D woven fabric system is simulated at filament level. A dynamic approach implementing the elasto-plastic fiber transversal behaviour is proposed to statistically investigate the probabilistic impact response and failure mechanism at filament level. A convergence study is carried out first to determine the resolution of discretization. The simulated impact performance of the single layer fabric is validated by the experiment’s upon impact velocity ranges from 38 to 346 m/s. The probabilistic velocity response (PVR) curve is derived utilizing the Langlie (one-shot) method. Then, the 1- to 6-layer fabric are simulated under the impact velocity of 518 m/s. The deflection and stress level of a filament in principal yarn in each layer is plotted over time. It revealed that filaments failed at random location due to statistical defect upon impact. The variation between the numerical and experimental reaches the most when impact velocity is in between <i>V</i><sub>0</sub> and <i>V</i><sub>100</sub>. Yarns are subjected to tensile dominate failure. Partial yarn failure, yarn decrimping, slippage, and filament transverse movement happened during the projectile perforation process. The stress level in the filament in principal yarns of all layers is almost the same, it propagates from the impact center to the edge and doubles its value, which leads to filament failure near the clamped edge.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 1","pages":"417 - 432"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00813-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the ballistic impact performance of the single and multi-layer 2D woven fabric system is simulated at filament level. A dynamic approach implementing the elasto-plastic fiber transversal behaviour is proposed to statistically investigate the probabilistic impact response and failure mechanism at filament level. A convergence study is carried out first to determine the resolution of discretization. The simulated impact performance of the single layer fabric is validated by the experiment’s upon impact velocity ranges from 38 to 346 m/s. The probabilistic velocity response (PVR) curve is derived utilizing the Langlie (one-shot) method. Then, the 1- to 6-layer fabric are simulated under the impact velocity of 518 m/s. The deflection and stress level of a filament in principal yarn in each layer is plotted over time. It revealed that filaments failed at random location due to statistical defect upon impact. The variation between the numerical and experimental reaches the most when impact velocity is in between V0 and V100. Yarns are subjected to tensile dominate failure. Partial yarn failure, yarn decrimping, slippage, and filament transverse movement happened during the projectile perforation process. The stress level in the filament in principal yarns of all layers is almost the same, it propagates from the impact center to the edge and doubles its value, which leads to filament failure near the clamped edge.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信