Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
João Neto, Abhishek Singh Dahiya, Ravinder Dahiya
{"title":"Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates","authors":"João Neto,&nbsp;Abhishek Singh Dahiya,&nbsp;Ravinder Dahiya","doi":"10.1186/s40580-024-00472-z","DOIUrl":null,"url":null,"abstract":"<div><p>The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot. This underlines the need for biological skin like processing in the e-skin. Herein, we present multi-gate field-effect transistors (<i>v</i>-FET) having capacitively coupled floating gate (FG) to mimic some of the neural functions. The <i>v</i>-FETs are obtained by deterministic assembly of ZnO nanowires on a flexible substrate using contactless dielectrophoresis method, followed metallization using conventional microfabrication steps. The spatial summation of two presynaptic inputs (applied at multiple control gates) of the transistor confirm their neuron-like response. The temporal summation (such as paired-pulse facilitation) by presented <i>v</i>-FETs further confirm their neuron-like mimicking with one presynaptic input. The temporal and spatial summation functions, demonstrated by the <i>v</i>-FET presented here, could open interesting new avenues for development of neuromorphic electronic skin (<i>v</i>-skin) with possibility of biological-skin like distributed computing.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00472-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00472-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot. This underlines the need for biological skin like processing in the e-skin. Herein, we present multi-gate field-effect transistors (v-FET) having capacitively coupled floating gate (FG) to mimic some of the neural functions. The v-FETs are obtained by deterministic assembly of ZnO nanowires on a flexible substrate using contactless dielectrophoresis method, followed metallization using conventional microfabrication steps. The spatial summation of two presynaptic inputs (applied at multiple control gates) of the transistor confirm their neuron-like response. The temporal summation (such as paired-pulse facilitation) by presented v-FETs further confirm their neuron-like mimicking with one presynaptic input. The temporal and spatial summation functions, demonstrated by the v-FET presented here, could open interesting new avenues for development of neuromorphic electronic skin (v-skin) with possibility of biological-skin like distributed computing.

基于柔性衬底上排列纳米线集成的多栅类神经元晶体管
生物皮肤中的感受器编码触觉数据的有趣方式激发了具有大脑启发或神经形态计算的电子皮肤(e-skin)的发展。从本地(近传感器)数据处理开始,有一种内在的机制在起作用,有助于缩小数据的规模。当考虑到大面积电子皮肤(如机器人的全身皮肤)中大量传感器产生的大量数据时,这一点尤其具有吸引力。这强调了在电子皮肤中处理生物皮肤的必要性。在这里,我们提出了具有电容耦合浮栅(FG)的多栅极场效应晶体管(v-FET)来模拟一些神经功能。v型场效应管是通过采用无接触介质电泳方法在柔性衬底上确定组装ZnO纳米线,然后采用传统的微加工步骤进行金属化而获得的。晶体管的两个突触前输入(应用于多个控制门)的空间总和证实了它们的神经元样响应。所提出的v- fet的时间累加(如配对脉冲易化)进一步证实了它们具有神经元样的突触前输入模拟。v-FET所展示的时间和空间求和函数可以为神经形态电子皮肤(v-skin)的发展开辟有趣的新途径,并有可能实现类似生物皮肤的分布式计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信