Daniel Kaplan, Adam Zheng, Joanna Blawat, Rongying Jin, Robert J. Cava, Viktor Oudovenko, Gabriel Kotliar, Anirvan M. Sengupta, Weiwei Xie
{"title":"Deep learning-based superconductivity prediction and experimental tests","authors":"Daniel Kaplan, Adam Zheng, Joanna Blawat, Rongying Jin, Robert J. Cava, Viktor Oudovenko, Gabriel Kotliar, Anirvan M. Sengupta, Weiwei Xie","doi":"10.1140/epjp/s13360-024-05947-w","DOIUrl":null,"url":null,"abstract":"<div><p>The discovery of novel superconducting materials is a long-standing challenge in materials science, with a wealth of potential for applications in energy, transportation and computing. Recent advances in artificial intelligence (AI) have enabled expediting the search for new materials by efficiently utilizing vast materials databases. In this study, we developed an approach based on deep learning (DL) to predict new superconducting materials. We have synthesized a compound derived from our DL network and confirmed its superconducting properties in agreement with our prediction. Our approach is also compared to previous work based on random forests (RFs). In particular, RFs require knowledge of the chemical properties of the compound, while our neural net inputs depend solely on the chemical composition. With the help of hints from our network, we discover a new ternary compound Mo<sub>20</sub>Re<sub>6</sub>Si<sub>4</sub>, which becomes superconducting below 5.4 K. We further discuss the existing limitations and challenges associated with using AI to predict and, along with potential future research directions.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjp/s13360-024-05947-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05947-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of novel superconducting materials is a long-standing challenge in materials science, with a wealth of potential for applications in energy, transportation and computing. Recent advances in artificial intelligence (AI) have enabled expediting the search for new materials by efficiently utilizing vast materials databases. In this study, we developed an approach based on deep learning (DL) to predict new superconducting materials. We have synthesized a compound derived from our DL network and confirmed its superconducting properties in agreement with our prediction. Our approach is also compared to previous work based on random forests (RFs). In particular, RFs require knowledge of the chemical properties of the compound, while our neural net inputs depend solely on the chemical composition. With the help of hints from our network, we discover a new ternary compound Mo20Re6Si4, which becomes superconducting below 5.4 K. We further discuss the existing limitations and challenges associated with using AI to predict and, along with potential future research directions.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.