Min Liu, Weihua Ma, Mai Zhang, Shuyi Huang, Shishi Lin, Jianjun Liao, Ping Zhang, Linlin Zhang
{"title":"Bio-inspired design of antifouling polymeric coatings with natural extracts: key evidence for resistance to fouling adhesion","authors":"Min Liu, Weihua Ma, Mai Zhang, Shuyi Huang, Shishi Lin, Jianjun Liao, Ping Zhang, Linlin Zhang","doi":"10.1007/s42114-024-01094-z","DOIUrl":null,"url":null,"abstract":"<div><p>Marine environmentally friendly antifouling materials are emerging as a viable and promising alternative to the conventional toxic antifouling agents. Within this field, the exploration of natural antifouling substances has become a significant research focus, representing an auspicious avenue for innovation in eco-friendly technologies. In this study, we delve into the development of eco-friendly antifouling coatings through a novel chemical modification process. By incorporating natural antifouling agents onto an acrylic acid substrate through a grafting process, we have successfully synthesized three distinct varieties of natural antifouling coatings: isobornyl acrylate polymer (IBAP), acrylate indole polymer (AIP), and indole isobornyl co-modified acrylate polymer (IAA-IBOMA). Through meticulous surface characterization, structural analysis, and a comprehensive suite of antifouling performance tests, our findings indicate that these coatings exhibit superior antifouling properties. Notably, the IAA-IBOMA coating demonstrated exceptional anti-adhesion effects. The specific inhibition rates against <i>E. coli</i>, <i>S. aureus</i>, and <i>Pseudoalteromonas aeruginosa</i> were impressive, achieving 93.5%, 92.8%, and 95.7%, respectively. Moreover, the anti-mussel selective adhesion inhibition rate was found to be 93.3%. Furthermore, environmental toxicity assessments have validated the eco-friendly and stable nature of the IAA-IBOMA coating. These results underscore the potential of these natural product-based coatings as sustainable solutions for the marine industry. This work offers valuable insights and holds significant implications for guiding the future development of environmentally friendly antifouling coatings, steering the industry towards a more sustainable and eco-conscious direction.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01094-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Marine environmentally friendly antifouling materials are emerging as a viable and promising alternative to the conventional toxic antifouling agents. Within this field, the exploration of natural antifouling substances has become a significant research focus, representing an auspicious avenue for innovation in eco-friendly technologies. In this study, we delve into the development of eco-friendly antifouling coatings through a novel chemical modification process. By incorporating natural antifouling agents onto an acrylic acid substrate through a grafting process, we have successfully synthesized three distinct varieties of natural antifouling coatings: isobornyl acrylate polymer (IBAP), acrylate indole polymer (AIP), and indole isobornyl co-modified acrylate polymer (IAA-IBOMA). Through meticulous surface characterization, structural analysis, and a comprehensive suite of antifouling performance tests, our findings indicate that these coatings exhibit superior antifouling properties. Notably, the IAA-IBOMA coating demonstrated exceptional anti-adhesion effects. The specific inhibition rates against E. coli, S. aureus, and Pseudoalteromonas aeruginosa were impressive, achieving 93.5%, 92.8%, and 95.7%, respectively. Moreover, the anti-mussel selective adhesion inhibition rate was found to be 93.3%. Furthermore, environmental toxicity assessments have validated the eco-friendly and stable nature of the IAA-IBOMA coating. These results underscore the potential of these natural product-based coatings as sustainable solutions for the marine industry. This work offers valuable insights and holds significant implications for guiding the future development of environmentally friendly antifouling coatings, steering the industry towards a more sustainable and eco-conscious direction.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.