Regularity of Conjugacies of Linearizable Generalized Interval Exchange Transformations

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Selim Ghazouani, Corinna Ulcigrai
{"title":"Regularity of Conjugacies of Linearizable Generalized Interval Exchange Transformations","authors":"Selim Ghazouani,&nbsp;Corinna Ulcigrai","doi":"10.1007/s00220-024-05197-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider generalized interval exchange transformations (GIETs) of <span>\\(d\\ge 2\\)</span> intervals which are <i>linearizable</i>, i.e. differentiably conjugated to standard interval exchange maps (IETs) via a diffeomorphism <i>h</i> of [0, 1] and study the regularity of the conjugacy <i>h</i>. Using a renormalization operator obtained accelerating Rauzy–Veech induction, we show that, under a full measure condition on the IET obtained by linearization, if the orbit of the GIET under renormalization converges exponentially fast in a <span>\\({\\mathcal {C}}^2\\)</span> distance to the subspace of IETs, there exists an exponent <span>\\(0&lt;\\alpha &lt;1\\)</span> such that <i>h</i> is <span>\\({\\mathcal {C}}^{1+\\alpha }\\)</span>. Combined with the results proved by the authors in [4], this implies in particular the following improvement of the rigidity result in genus two proved in [4] (from <span>\\({\\mathcal {C}}^1\\)</span> to <span>\\({\\mathcal {C}}^{1+\\alpha }\\)</span> rigidity): for almost every irreducible IET <span>\\(T_0 \\)</span> with <span>\\(d=4\\)</span> or <span>\\(d=5\\)</span>, for any GIET which is topologically conjugate to <span>\\(T_0\\)</span> via a homeomorphism <i>h</i> and has vanishing boundary, the topological conjugacy <i>h</i> is actually a <span>\\({\\mathcal {C}}^{1+\\alpha }\\)</span> diffeomorphism, i.e. a diffeomorphism <i>h</i> with derivative <i>Dh</i> which is <span>\\(\\alpha \\)</span>-Hölder continuous.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05197-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05197-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider generalized interval exchange transformations (GIETs) of \(d\ge 2\) intervals which are linearizable, i.e. differentiably conjugated to standard interval exchange maps (IETs) via a diffeomorphism h of [0, 1] and study the regularity of the conjugacy h. Using a renormalization operator obtained accelerating Rauzy–Veech induction, we show that, under a full measure condition on the IET obtained by linearization, if the orbit of the GIET under renormalization converges exponentially fast in a \({\mathcal {C}}^2\) distance to the subspace of IETs, there exists an exponent \(0<\alpha <1\) such that h is \({\mathcal {C}}^{1+\alpha }\). Combined with the results proved by the authors in [4], this implies in particular the following improvement of the rigidity result in genus two proved in [4] (from \({\mathcal {C}}^1\) to \({\mathcal {C}}^{1+\alpha }\) rigidity): for almost every irreducible IET \(T_0 \) with \(d=4\) or \(d=5\), for any GIET which is topologically conjugate to \(T_0\) via a homeomorphism h and has vanishing boundary, the topological conjugacy h is actually a \({\mathcal {C}}^{1+\alpha }\) diffeomorphism, i.e. a diffeomorphism h with derivative Dh which is \(\alpha \)-Hölder continuous.

可线性广义区间交换变换共轭的正则性
本文考虑\(d\ge 2\)区间的广义区间交换变换(GIETs)是线性的,即通过[0,1]的微分同构h可微分共轭到标准区间交换映射(IETs),并研究了其共轭h的规律性。利用加速Rauzy-Veech归纳得到的重整化算子,我们证明了在线性化得到的广义区间交换映射的满测度条件下,如果重整后的GIET轨道在距离其子空间\({\mathcal {C}}^2\)的距离上以指数速度收敛,则存在一个指数\(0<\alpha <1\)使得h = \({\mathcal {C}}^{1+\alpha }\)。结合作者在[4]中证明的结果,这特别意味着在[4]中证明的属2的刚度结果的以下改进(从\({\mathcal {C}}^1\)到\({\mathcal {C}}^{1+\alpha }\)刚度):对于几乎每一个具有\(d=4\)或\(d=5\)的不可约IET \(T_0 \),对于任何通过同胚h拓扑共轭于\(T_0\)且具有消失边界的GIET,其拓扑共轭h实际上是一个\({\mathcal {C}}^{1+\alpha }\)微分同胚,即具有\(\alpha \) -Hölder连续导数Dh的微分同胚h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信