Muzhaozi Yuan, Zongsu Han, Yogish Somayaji, Nguyen Nguyen, Hanwen Hu, Leelavathi N. Madhu, Sahithi Attaluri, Maheedhar Kodali, Yihao Yang, Yu-Chuan Hsu, Avik Ahuja, Rahul Srinivasan, Jean-Philippe Pellois, Hong-Cai Zhou, Ashok K. Shetty, Ya Wang
{"title":"Intranasal delivery of metformin using metal–organic framework (MOF)-74-Mg nanocarriers","authors":"Muzhaozi Yuan, Zongsu Han, Yogish Somayaji, Nguyen Nguyen, Hanwen Hu, Leelavathi N. Madhu, Sahithi Attaluri, Maheedhar Kodali, Yihao Yang, Yu-Chuan Hsu, Avik Ahuja, Rahul Srinivasan, Jean-Philippe Pellois, Hong-Cai Zhou, Ashok K. Shetty, Ya Wang","doi":"10.1007/s42114-025-01227-y","DOIUrl":null,"url":null,"abstract":"<div><p>Dosage tolerance is one of the translational challenges of using metformin (Met) in brain therapeutics. This paper presents metal–organic framework (MOF)-74-Mg nanocarriers (NCs) for intranasal (IN) delivery of brain-specific agents with a prolonged release time. We confirmed their excellent biocompatibility (5 mg/mL) and intrinsic fluorescence properties (370/500 nm excitation/emission peak) in Neuro-2A cells. This NC exhibited a high Met loading rate (10% wt/wt) and a sustained and prolonged release pattern of Met (90% release in 16 h) in Dulbecco’s Modified Eagle Medium. We observed an optimal brain accumulation of Met-MOF (9% of the injected dosage) 8 h after IN injection. This percentage is at least 82 times higher than oral administration. Confocal imaging demonstrated significantly higher uptake of Met-MOF, 45 min after IN injection, by 79–85% neurons and 93–97% microglia than astrocytes and oligodendrocytes across 5xFAD mouse brain regions, including hippocampus and striatum. These results suggest MOF-74-Mg is a potential NC for high brain Met accumulation, real-time imaging, and prolonged and sustained release of Met and other neurotherapeutic agents that are challenging to deliver using traditional carriers and administration routes.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01227-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01227-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Dosage tolerance is one of the translational challenges of using metformin (Met) in brain therapeutics. This paper presents metal–organic framework (MOF)-74-Mg nanocarriers (NCs) for intranasal (IN) delivery of brain-specific agents with a prolonged release time. We confirmed their excellent biocompatibility (5 mg/mL) and intrinsic fluorescence properties (370/500 nm excitation/emission peak) in Neuro-2A cells. This NC exhibited a high Met loading rate (10% wt/wt) and a sustained and prolonged release pattern of Met (90% release in 16 h) in Dulbecco’s Modified Eagle Medium. We observed an optimal brain accumulation of Met-MOF (9% of the injected dosage) 8 h after IN injection. This percentage is at least 82 times higher than oral administration. Confocal imaging demonstrated significantly higher uptake of Met-MOF, 45 min after IN injection, by 79–85% neurons and 93–97% microglia than astrocytes and oligodendrocytes across 5xFAD mouse brain regions, including hippocampus and striatum. These results suggest MOF-74-Mg is a potential NC for high brain Met accumulation, real-time imaging, and prolonged and sustained release of Met and other neurotherapeutic agents that are challenging to deliver using traditional carriers and administration routes.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.