Sustainable Degradation of Organophosphate Contaminated Wastewater By Hydrodynamic Cavitation: A New Insight Into Synergistic Ways of Integration of AOPs and Their Effects, Kinetics and Energy-Economics
{"title":"Sustainable Degradation of Organophosphate Contaminated Wastewater By Hydrodynamic Cavitation: A New Insight Into Synergistic Ways of Integration of AOPs and Their Effects, Kinetics and Energy-Economics","authors":"Shwetha Shree Timmapuram, Pramod Kumar Kommagalla, Pavani Vadthya","doi":"10.1007/s11270-025-07745-1","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of advanced oxidation processes (AOPs) integration with hydrodynamic cavitation (HC) along with energy-economics, has been studied towards the sustainable degradation of the organophosphate (OP) pesticide-contaminated agrochemical wastewater. Initially, the geometric interpretations of HC have been studied by hydrodynamic analysis towards selection of an optimal orifice device. The independent and integrated effects of AOPs were investigated for degradation. The optimal operational parameters for HC along with the degradation kinetics have been established. The reduction in total organic carbon (TOC) obtained by different approaches for 240 minutes of treatment time is reported. Treatment with HC alone resulted in 71% reduction, HC + H<sub>2</sub>O<sub>2</sub> achieved 82%, HC + O<sub>3</sub> reached 79%, HC + H<sub>2</sub>O<sub>2</sub> + O<sub>3</sub> resulted in 80% reduction. Among all combinations, based on energy-economics and kinetic-studies, the case of ozonation(O<sub>3</sub>) given as pretreatment to HC has shown the highest degradation with 95% TOC reduction. In comparison to the simultaneous integration of O<sub>3</sub> with HC, the operational time required for TOC reduction of 90% was found to be 1.24 times lower with ozone pretreatment followed by HC operation, moreover the cost of operation drastically reduced by 14-fold. The byproduct analysis also shows that independent O<sub>3</sub> treatment for degradation, leads to the formation of secondary contaminants. However, the standalone HC process is found to be the most cost-effective, with 21-fold lesser operational costs as compared to the integrated processes but has a higher operational time. Therefore, the integrated process of O<sub>3</sub> pretreatment + HC was found to be a promising technology for OP degradation in terms of operational time and costs, while not generating any byproducts.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07745-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of advanced oxidation processes (AOPs) integration with hydrodynamic cavitation (HC) along with energy-economics, has been studied towards the sustainable degradation of the organophosphate (OP) pesticide-contaminated agrochemical wastewater. Initially, the geometric interpretations of HC have been studied by hydrodynamic analysis towards selection of an optimal orifice device. The independent and integrated effects of AOPs were investigated for degradation. The optimal operational parameters for HC along with the degradation kinetics have been established. The reduction in total organic carbon (TOC) obtained by different approaches for 240 minutes of treatment time is reported. Treatment with HC alone resulted in 71% reduction, HC + H2O2 achieved 82%, HC + O3 reached 79%, HC + H2O2 + O3 resulted in 80% reduction. Among all combinations, based on energy-economics and kinetic-studies, the case of ozonation(O3) given as pretreatment to HC has shown the highest degradation with 95% TOC reduction. In comparison to the simultaneous integration of O3 with HC, the operational time required for TOC reduction of 90% was found to be 1.24 times lower with ozone pretreatment followed by HC operation, moreover the cost of operation drastically reduced by 14-fold. The byproduct analysis also shows that independent O3 treatment for degradation, leads to the formation of secondary contaminants. However, the standalone HC process is found to be the most cost-effective, with 21-fold lesser operational costs as compared to the integrated processes but has a higher operational time. Therefore, the integrated process of O3 pretreatment + HC was found to be a promising technology for OP degradation in terms of operational time and costs, while not generating any byproducts.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.