{"title":"Effect of Spin Fluctuation on a Frustrated Two-Dimensional Ising Antiferromagnet in Magnetic Fields","authors":"Thao Huong Pham","doi":"10.1007/s10948-024-06843-1","DOIUrl":null,"url":null,"abstract":"<div><p>The <span>\\({J}_{1}-{J}_{2}\\)</span> frustrated two-dimensional Ising antiferromagnet in the magnetic fields on the square lattice is studied using a functional integral method. First, we determine possible ground states of the model including Néel antiferromagnetic phase and striped antiferromagnetic phase, which depend on the value of the frustrated parameter <span>\\(\\alpha ={J}_{2}/{J}_{1}\\)</span>. The influence of the spin fluctuations in the presence of the frustration, temperature, and longitudinal and transverse fields on these two phases is also studied, which shows the strong impact of the spin fluctuations at the phase transition points. The effects of the longitudinal and transverse fields are highlighted. In addition, we also calculate and plot the temperature dependence of the magnetic susceptibility, and we find a sharp peak related to a phase transition and a rounded peak related to the competition of the effects of the antiferromagnetic exchange couplings, temperature and fields. Hence, we suggest experimental relevance for the given theoretical model with Li<sub>2</sub>VOSiO<sub>4</sub> and YbBi<sub>2</sub>IO<sub>4</sub>.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06843-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The \({J}_{1}-{J}_{2}\) frustrated two-dimensional Ising antiferromagnet in the magnetic fields on the square lattice is studied using a functional integral method. First, we determine possible ground states of the model including Néel antiferromagnetic phase and striped antiferromagnetic phase, which depend on the value of the frustrated parameter \(\alpha ={J}_{2}/{J}_{1}\). The influence of the spin fluctuations in the presence of the frustration, temperature, and longitudinal and transverse fields on these two phases is also studied, which shows the strong impact of the spin fluctuations at the phase transition points. The effects of the longitudinal and transverse fields are highlighted. In addition, we also calculate and plot the temperature dependence of the magnetic susceptibility, and we find a sharp peak related to a phase transition and a rounded peak related to the competition of the effects of the antiferromagnetic exchange couplings, temperature and fields. Hence, we suggest experimental relevance for the given theoretical model with Li2VOSiO4 and YbBi2IO4.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.