New approaches to secondary metabolite discovery from anaerobic gut microbes

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lazarina V. Butkovich, Oliver B. Vining, Michelle A. O’Malley
{"title":"New approaches to secondary metabolite discovery from anaerobic gut microbes","authors":"Lazarina V. Butkovich,&nbsp;Oliver B. Vining,&nbsp;Michelle A. O’Malley","doi":"10.1007/s00253-024-13393-y","DOIUrl":null,"url":null,"abstract":"<p>The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilize <i>in</i> <i>silico</i> tools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme &amp; Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism.</p><p><i>• Gut microbial secondary metabolites have therapeutic and biotechnological potential</i></p><p><i>• Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery</i></p><p><i>• Anaerobic biofoundries enable high-throughput workflows for metabolite discovery</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-024-13393-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-024-13393-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilize in silico tools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism.

• Gut microbial secondary metabolites have therapeutic and biotechnological potential

• Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery

• Anaerobic biofoundries enable high-throughput workflows for metabolite discovery

从厌氧肠道微生物中发现次生代谢物的新方法
动物肠道微生物群是一个复杂的系统,以厌氧微生物群为主,具有次生代谢潜能。这些代谢物可能在形成微生物群落成员和影响动物宿主健康方面发挥作用。因此,来自肠道微生物的新型次级代谢物具有重要的生物技术和治疗意义。尽管具有潜力,但肠道微生物的次生代谢物在很大程度上尚未开发,肠道真菌和专性厌氧菌尤其未得到充分开发。为了进一步了解这些代谢物,基于培养和(元)基因组的方法是必不可少的。基于培养的方法可以分离、培养和直接研究肠道微生物,而基于(元)基因组的方法利用计算机工具从尚未成功培养的微生物中挖掘生物合成基因簇(bgc)。在这篇小型综述中,我们重点介绍了该领域的最新创新,包括ExFAB等厌氧生物铸造厂,美国国家科学基金会(NSF)的极限生物铸造厂;特殊的真菌、古生菌和细菌。这些设施使高通量工作流程能够研究对氧敏感的微生物和生物合成机械。这些最近的进展有望提高我们对肠道微生物群及其次级代谢的理解。•肠道微生物次生代谢物具有治疗和生物技术潜力•基于培养和(元)基因组的工作流程推动肠道厌氧菌代谢物的发现•厌氧生物foundry使代谢物发现的高通量工作流程成为可能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信