The \(C^*\)-algebra of the Heisenberg motion groups \(U(d) < imes \mathbb {H}_d.\)

IF 0.8 Q2 MATHEMATICS
Hedi Regeiba, Aymen Rahali
{"title":"The \\(C^*\\)-algebra of the Heisenberg motion groups \\(U(d) < imes \\mathbb {H}_d.\\)","authors":"Hedi Regeiba,&nbsp;Aymen Rahali","doi":"10.1007/s43036-024-00417-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbb {H}_d:=\\mathbb {C}^d\\times \\mathbb {R},\\)</span> <span>\\((d\\in \\mathbb {N}^*)\\)</span> be the <span>\\(2d+1\\)</span>-dimensional Heisenberg group and we denote by <i>U</i>(<i>d</i>) (the unitary group) the maximal compact connected subgroup of <span>\\(Aut(\\mathbb {H}_d),\\)</span> the group of automorphisms of <span>\\(\\mathbb {H}_d.\\)</span> Let <span>\\(G_d:=U(d) &lt; imes \\mathbb {H}_d\\)</span> be the Heisenberg motion group. In this work, we describe the <span>\\(C^*\\)</span>-algebra <span>\\(C^*(G_d),\\)</span> of <span>\\(G_d\\)</span> in terms of an algebra of operator fields defined over its dual space <span>\\(\\widehat{G_d}.\\)</span> This result generalizes a previous result in Ludwig and Regeiba (Complex Anal Oper Theory 13(8):3943–3978, 2019).</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00417-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathbb {H}_d:=\mathbb {C}^d\times \mathbb {R},\) \((d\in \mathbb {N}^*)\) be the \(2d+1\)-dimensional Heisenberg group and we denote by U(d) (the unitary group) the maximal compact connected subgroup of \(Aut(\mathbb {H}_d),\) the group of automorphisms of \(\mathbb {H}_d.\) Let \(G_d:=U(d) < imes \mathbb {H}_d\) be the Heisenberg motion group. In this work, we describe the \(C^*\)-algebra \(C^*(G_d),\) of \(G_d\) in terms of an algebra of operator fields defined over its dual space \(\widehat{G_d}.\) This result generalizes a previous result in Ludwig and Regeiba (Complex Anal Oper Theory 13(8):3943–3978, 2019).

海森堡运动群的\(C^*\) -代数 \(U(d) < imes \mathbb {H}_d.\)
让 \(\mathbb {H}_d:=\mathbb {C}^d\times \mathbb {R},\) \((d\in \mathbb {N}^*)\) 做一个 \(2d+1\)我们用U(d)(酉群)表示的最大紧连通子群 \(Aut(\mathbb {H}_d),\) 的自同构群 \(\mathbb {H}_d.\) 让 \(G_d:=U(d) < imes \mathbb {H}_d\) 就是海森堡运动群。在这项工作中,我们描述了 \(C^*\)-代数 \(C^*(G_d),\) 的 \(G_d\) 在它的对偶空间上定义的算子域的代数中 \(\widehat{G_d}.\) 这一结果推广了Ludwig和Regeiba (Complex肛门开放理论13(8):3943 - 3978,2019)之前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信