On an application of the lattice of \(\sigma\)-permutable subgroups of a finite group

IF 0.6 3区 数学 Q3 MATHEMATICS
A. -M. Liu, V. G. Safonov, A. N. Skiba, S. Wang
{"title":"On an application of the lattice of \\(\\sigma\\)-permutable subgroups of a finite group","authors":"A. -M. Liu,&nbsp;V. G. Safonov,&nbsp;A. N. Skiba,&nbsp;S. Wang","doi":"10.1007/s10474-024-01476-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\sigma =\\{\\sigma_{i} \\mid i\\in I\\}\\)</span> be some partition of the set of all primes and <span>\\(G\\)</span> a finite group. Then <span>\\(G\\)</span> is said to be <span>\\(\\sigma\\)</span>-full if <span>\\(G\\)</span> has a Hall <span>\\(\\sigma _{i}\\)</span>-subgroup for all <span>\\(i\\)</span>; <span>\\(\\sigma\\)</span>-primary if <span>\\(G\\)</span> is a <span>\\(\\sigma _{i}\\)</span>-group for some <span>\\(i\\)</span>; <span>\\(\\sigma\\)</span>-soluble if every chief factor of <span>\\(G\\)</span> is <span>\\(\\sigma\\)</span>-primary; <span>\\(\\sigma\\)</span>-nilpotent if <span>\\(G\\)</span> is the direct product of <span>\\(\\sigma\\)</span>-primary groups; <span>\\(G^{\\mathfrak{N}_{\\sigma}}\\)</span> denotes the <span>\\(\\sigma\\)</span>-nilpotent residual of <span>\\(G\\)</span>, that is, the intersection of all normal subgroups <span>\\(N\\)</span> of <span>\\(G\\)</span> with <span>\\(\\sigma\\)</span>-nilpotent quotient <span>\\(G/N\\)</span>.</p><p>A subgroup <span>\\(A\\)</span> of <span>\\(G\\)</span> is said to be: <span>\\(\\sigma\\)</span>-permutable in <span>\\(G\\)</span> provided <span>\\(G\\)</span> is <span>\\(\\sigma\\)</span>-full and <span>\\(A\\)</span> permutes with all Hall <span>\\(\\sigma _{i}\\)</span>-subgroups <span>\\(H\\)</span> of <span>\\(G\\)</span> (that is, <span>\\(AH=HA\\)</span>) for all <span>\\(i\\)</span>; <span>\\(\\sigma\\)</span>-subnormal in <span>\\(G\\)</span> if there is a subgroup chain <span>\\(A=A_{0} \\leq A_{1} \\leq \\cdots \\leq A_{n}=G\\)</span> such that either <span>\\(A_{i-1} \\trianglelefteq A_{i}\\)</span> or <span>\\(A_{i}/(A_{i-1})_{A_{i}}\\)</span> is <span>\\(\\sigma\\)</span>-primary for all <span>\\(i=1, \\ldots , n\\)</span>.</p><p>Let <span>\\(A_{\\sigma G}\\)</span> be the subgroup of <span>\\(A\\)</span> generated by all <span>\\(\\sigma\\)</span>-permutable subgroups of <span>\\(G\\)</span> contained in <span>\\(A\\)</span> and <span>\\(A^{\\sigma G}\\)</span> be the intersection of all <span>\\(\\sigma\\)</span>-permutable subgroups of <span>\\(G\\)</span> containing <span>\\(A\\)</span>.</p><p>We prove that if <span>\\(G\\)</span> is a finite <span>\\(\\sigma\\)</span>-soluble group, then the <span>\\(\\sigma\\)</span>-permutability is a transitive relation in <span>\\(G\\)</span> if and only if <span>\\(G^{\\mathfrak{N}_{\\sigma}}\\)</span> avoids the pair <span>\\((A^{\\sigma G}, A_{\\sigma G})\\)</span>, that is, <span>\\(G^{\\mathfrak{N}_{\\sigma}}\\cap A^{\\sigma G}= G^{\\mathfrak{N}_{\\sigma}}\\cap A_{\\sigma G}\\)</span> for every <span>\\(\\sigma\\)</span>-subnormal subgroup <span>\\(A\\)</span> of <span>\\(G\\)</span>.\n</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 2","pages":"482 - 497"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01476-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\sigma =\{\sigma_{i} \mid i\in I\}\) be some partition of the set of all primes and \(G\) a finite group. Then \(G\) is said to be \(\sigma\)-full if \(G\) has a Hall \(\sigma _{i}\)-subgroup for all \(i\); \(\sigma\)-primary if \(G\) is a \(\sigma _{i}\)-group for some \(i\); \(\sigma\)-soluble if every chief factor of \(G\) is \(\sigma\)-primary; \(\sigma\)-nilpotent if \(G\) is the direct product of \(\sigma\)-primary groups; \(G^{\mathfrak{N}_{\sigma}}\) denotes the \(\sigma\)-nilpotent residual of \(G\), that is, the intersection of all normal subgroups \(N\) of \(G\) with \(\sigma\)-nilpotent quotient \(G/N\).

A subgroup \(A\) of \(G\) is said to be: \(\sigma\)-permutable in \(G\) provided \(G\) is \(\sigma\)-full and \(A\) permutes with all Hall \(\sigma _{i}\)-subgroups \(H\) of \(G\) (that is, \(AH=HA\)) for all \(i\); \(\sigma\)-subnormal in \(G\) if there is a subgroup chain \(A=A_{0} \leq A_{1} \leq \cdots \leq A_{n}=G\) such that either \(A_{i-1} \trianglelefteq A_{i}\) or \(A_{i}/(A_{i-1})_{A_{i}}\) is \(\sigma\)-primary for all \(i=1, \ldots , n\).

Let \(A_{\sigma G}\) be the subgroup of \(A\) generated by all \(\sigma\)-permutable subgroups of \(G\) contained in \(A\) and \(A^{\sigma G}\) be the intersection of all \(\sigma\)-permutable subgroups of \(G\) containing \(A\).

We prove that if \(G\) is a finite \(\sigma\)-soluble group, then the \(\sigma\)-permutability is a transitive relation in \(G\) if and only if \(G^{\mathfrak{N}_{\sigma}}\) avoids the pair \((A^{\sigma G}, A_{\sigma G})\), that is, \(G^{\mathfrak{N}_{\sigma}}\cap A^{\sigma G}= G^{\mathfrak{N}_{\sigma}}\cap A_{\sigma G}\) for every \(\sigma\)-subnormal subgroup \(A\) of \(G\).

有限群的\(\sigma\) -可置换子群格的应用
让 \(\sigma =\{\sigma_{i} \mid i\in I\}\) 是所有素数和的集合的某种划分 \(G\) 一个有限群。然后 \(G\) 据说是 \(\sigma\)-满if \(G\) 有一个大厅 \(\sigma _{i}\)-subgroup表示所有 \(i\); \(\sigma\)-primary if \(G\) 是? \(\sigma _{i}\)-group for some \(i\); \(\sigma\)-可溶,如果每一个主要因子 \(G\) 是 \(\sigma\)-primary; \(\sigma\)-幂零if \(G\) 的直接乘积是 \(\sigma\)-主要群体; \(G^{\mathfrak{N}_{\sigma}}\) 表示 \(\sigma\)的幂零残差 \(G\),即所有正规子群的交集 \(N\) 的 \(G\) 有 \(\sigma\)-幂零商 \(G/N\)a子组 \(A\) 的 \(G\) 据说是: \(\sigma\)-可变的 \(G\) 提供 \(G\) 是 \(\sigma\)-满的和 \(A\) 与所有的大厅保持一致 \(\sigma _{i}\)-subgroups \(H\) 的 \(G\) (也就是说, \(AH=HA\))所有人 \(i\); \(\sigma\)-次正常 \(G\) 如果有子组链 \(A=A_{0} \leq A_{1} \leq \cdots \leq A_{n}=G\) 这样要么 \(A_{i-1} \trianglelefteq A_{i}\) 或 \(A_{i}/(A_{i-1})_{A_{i}}\) 是 \(\sigma\)-对所有人都是首要的 \(i=1, \ldots , n\).让 \(A_{\sigma G}\) 的子群 \(A\) 由所有人生成 \(\sigma\)的可置换子群 \(G\) 包含在 \(A\) 和 \(A^{\sigma G}\) 成为一切的交汇点 \(\sigma\)的可置换子群 \(G\) 包含 \(A\)我们证明如果 \(G\) 是有限的 \(\sigma\)-可溶性基团,然后 \(\sigma\)-置换是中的传递关系 \(G\) 当且仅当 \(G^{\mathfrak{N}_{\sigma}}\) 避免这一对 \((A^{\sigma G}, A_{\sigma G})\),也就是说, \(G^{\mathfrak{N}_{\sigma}}\cap A^{\sigma G}= G^{\mathfrak{N}_{\sigma}}\cap A_{\sigma G}\) 对于每一个 \(\sigma\)-subnormal subgroup \(A\) 的 \(G\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信